Opto-Electronic Engineering, Volume. 45, Issue 2, 170690(2018)
The application status and development of laser shock processing
[1] [1] Alexander W O, Davies G J, Reynolds K A, et al. Essential Metallurgy for Engineers[M]. United Kingdom: Van Nostrand Reinhold, 1985.
[2] [2] Manson S S. Metal Fatigue Damage[M]. Lu S, trans. Beijing: National Defense Industry Press, 1976.
[3] [3] Xu B S, Ma S N, Liu S C, et al. Nano Surface Engineering[M]. Beijing: Chemical Industry Press, 2000.
[4] [4] Li S X, Qiao H C, Zhao J B, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569–576.
[5] [5] Singh G, Grandhi R V, Stargel D S. Modeling and parameter design of a laser shock peening process[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2011, 12(5): 233–253.
[6] [6] Li Y H. Theory and Technology of Laser Shock Processing[M]. Beijing: Science Press, 2013.
[7] [7] Li W, Li Y H, He W F, et al. Development and application of Laser Shock Processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15–19.
[8] [8] Lu J, Ni X W, He A Z. Laser and Material Interaction Physics[M]. Beijing: China Machine Press, 1996.
[9] [9] Nalla R K, Altenberger I, Noster U, et al. On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures[J]. Materials Science and Engineering: A, 2003, 355(1–2): 216–230.
[10] [10] Pirri A N. Analytic solutions for laser-supported combustion wave ignition above surfaces[J]. AIAA Journal, 1977, 15(1): 83–91.
[11] [11] Zou S K. The latest development of laser shock processing[J]. New Technology & New Process, 2005(44): 44–46.
[12] [12] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265–279.
[13] [13] Bi F Q, Zhang C C, Li H C, et al. Development and application of laser shock processing[J]. Ordnance Material Science and Engineering, 2010, 33(1): 101–104.
[14] [14] Xiao A M, Yang J C, Zhang Y K. Physical processes of Laser Shock processing and examples of application[J]. Electromachining & Mould, 2000(6): 7–10.
[15] [15] Zhang H, Deng Q L, Tang Y X, et al. Laser shock processing and its progress[J]. Aeronautical Manufacturing Technology, 1997(1): 19–21.
[16] [16] Ding Y X, Zhou L Z. Status and development of laser surface treating[J]. Metal Hotworking Technology, 2007, 36(6): 69–72.
[17] [17] Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[ J]. International Journal of Fatigue, 2002, 24(10): 1021–1036.
[18] [18] Askar'yan G A, Moroz E M. Pressure on evaporation of matter in a radiation beam[J]. Soviet Journal of Experimental and Theoretical Physics, 1963, 16: 1638–1639.
[19] [19] Hu T Y, Qiao H C, Zhao J B, et al. Development of laser shock peening equipment[J]. Opto-Electronic Engineering, 2017, 44(7): 732–737.
[20] [20] Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock–induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893–3895.
[21] [21] Fairand B P, Clauer A H. Laser generation of high‐amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497–1502.
[22] [22] Gao Y K, Jiang C Y. Review and prospect on laser shock peening[ J]. Aeronautical Manufacturing Technology, 2016(4): 16–20.
[23] [23] Clauer A H, Fairand B P, Wilcox B A. Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy[J]. Metallurgical Transactions A, 1977, 8(1): 119–125.
[24] [24] Universal Technology Corporation. High Cycle Fatigue (HCF) science and technology program 1997 annual report[R]. 1998.
[25] [25] Universal Technology Corporation. High cycle fatigue science and technology program 1999 annual report[R]. Dayton, Oh: Universal Technology Corporation: Universal Technology Corporation, 2000.
[26] [26] Universal Technology Corporation. High Cycle Fatigue (HCF) science and technology program 2000 annual report[R]. Dayton, Oh: Universal Technology Corporation, 2000.
[27] [27] Universal Technology Corporation. High Cycle Fatigue (HCF) science and technology program, 2001 annual report[R]. Dayton, Oh: Universal Technology Corporation, 2002.
[28] [28] Universal Technology Corporation. High Cycle Fatigue (HCF) Science and Technology Program 2002 Annual Report[R]. Dayton, Oh: Universal Technology Corporation, 2003.
[29] [29] Bartsch T M. High Cycle Fatigue (HCF) science and technology program[M]//Nuclear Data in Science and Technology, International Atomic Energy Agency, 2002: 607–614.
[30] [30] Peyre P, Fabbro R, Berthe L, et al. Laser shock processing of materials, physical processes involved and examples of applications[ J]. Journal of Laser Applications, 1996, 8(3): 135–141.
[31] [31] Zhang H, Yu C Y. Laser shock processing of 2024-T62 aluminum alloy[J]. Materials Science and Engineering: A, 1998, 257(2): 322–327.
[32] [32] Ruschau J J, John R, Thompson S R, et al. Fatigue crack growth rate characteristics of laser shock peened Ti-6Al-4V[J]. Journal of Engineering Materials and Technology, 1999, 121(3): 321–329.
[33] [33] Prevéy P S. The effect of cold work on the thermal stability of residual compression in surface enhanced IN718[C]// Proceedings of the 20th ASM Materials Solutions Conference & Exposition, 2000.
[34] [34] See D W, Dulaney J L, Clauer A H, et al. The air force manufacturing technology laser peening initiative[J]. Surface Engineering, 2002, 18(1): 32–36.
[35] [35] Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 121(1–4): 432–436.
[36] [36] Qiao H C, Zhao J B, Lu Y. Current status of laser-induced shock wave application technology[J]. Surface Technology, 2006, 45(1): 1–6, 48.
[37] [37] Hashmi S, Batalha G F, Van Tyne C J, et al. Comprehensive Materials Processing[M]. Oxford: Elsevier, 2014.
[38] [38] Su C, Zhou J Z, Meng X K, et al. Research progress of temperature- assisted laser shock technology[J]. Surface Technology, 2006, 45(10): 121–128.
[39] [39] Liao Y L, Ye C, Kim B J, et al. Nucleation of highly dense nanoscale precipitates based on warm laser shock peening[J]. Journal of Applied Physics, 2010, 108(6): 063518.
[40] [40] Ye C, Liao Y L, Cheng G J. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Advanced Engineering Materials, 2010, 12(4): 291–297.
[41] [41] Lin D, Suslov S, Ye C, et al. Laser assisted embedding of nanoparticles into metallic materials[J]. Applied Surface Science, 2012, 258(7): 2289–2296.
[42] [42] Liao Y L, Suslov S, Ye C, et al. The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance[ J]. Acta Materialia, 2012, 60(13–14): 4997–5009.
[43] [43] Kalentics N, Boillat E, Peyre P, et al. Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening[ J]. Additive Manufacturing, 2017, 16: 90-97.
[44] [44] Liu Z D, Yang Y S, Yu C Y. Using laser shock processing to improve metal fatigue property[J]. Aeronautical Manufacturing Technology, 1992(5): 8–12.
[45] [45] Gao J M. Chinese first laser shock peening equipment is published[ J]. High Technology Letters, 1996(6): 32.
[46] [46] Anonymous. Chinese first laser shock peening production line is established[J]. Dual Use Technology & Products, 2009(1): 29.
[47] [47] Qiao H C, Gao Y, Zhao J B, et al. Research process of laser peening technology[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1744–1755.
[48] [48] Ningbo Institute of Material Technology and Engineering, CAS. A new generation of laser shock peening technology get a breakthrough[ J]. Surface Engineering & Remanufacturing, 2017, 17(1): 53.
Get Citation
Copy Citation Text
Wu Jiajun, Zhao Jibin, Qiao Hongchao, Lu Ying, Sun Boyu, Hu Taijiu, Zhang Yinuo. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690
Category:
Received: Dec. 15, 2017
Accepted: --
Published Online: May. 3, 2018
The Author Email: Jiajun Wu (wujiajun@sia.cn)