Infrared and Laser Engineering, Volume. 51, Issue 7, 20220234(2022)

Research on a 1.7 μm all-fiber mode-locked Tm-doped fiber laser

Yuxin Gao1,2, Jixiang Chen2, Zexian Zhang2, Zeyu Zhan2, and Zhichao Luo2、*
Author Affiliations
  • 1Department of Mechanical and Electrical Engineering, Shandong Polytechnic College, Jining 272067, China
  • 2Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
  • show less
    References(26)

    [1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [2] Öktem B, Pavlov I, Ilday S, et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nature Photonics, 7, 897-901(2013).

    [3] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: Multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [4] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).

    [5] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 7, 875-882(2013).

    [6] Sordillo L A, Pu Y, Pratavieira S, et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows[J]. Journal of Biomedical Optics, 19, 056004(2014).

    [7] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [8] Zhu J, Freitas H R, Maezawa I, et al. 1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain[J]. Light: Science & Applications, 10, 1-13(2021).

    [9] Alexander V V, Ke K, Xu Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 43, 470-480(2011).

    [10] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [11] Zhan Zeyu, Chen Jixiang, Liu Meng, . Recent progress of 1.7 μm ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 51, 20210850(2022).

    [12] Wang K, Xu C. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy[J]. Applied Physics Letters, 99, 071112(2011).

    [13] Liu Yang, Cao Qian, Diao Xincai, . Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 50, 20210368(2021).

    [14] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 40, 4360-4363(2015).

    [15] Khegai A, Melkumov M, Riumkin K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 43, 1127-1130(2018).

    [16] Agger S D, Povlsen J H. Emission and absorption cross section of thulium doped silica fibers[J]. Optics Express, 14, 50-57(2006).

    [17] Jackson S D. The spectroscopic and energy transfer charac-teristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared[J]. Laser & Photonics Reviews, 3, 466-482(2009).

    [18] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 µm[J]. Optics Express, 14, 6084-6090(2006).

    [19] Daniel J M O, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).

    [20] Noronen T, Okhotnikov O, Gumenyuk R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band[J]. Optics Express, 24, 14703-14708(2016).

    [21] Li C, Wei X, Kong C, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser[J]. APL Photonics, 2, 121302(2017).

    [22] Chen J X, Li X Y, Li T J, et al. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 9, 873-878(2021).

    [23] Chen S, Chen Y, Liu K, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber[J]. Optics Express, 28, 17570-17580(2020).

    [24] Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 65, 277-294(1997).

    [25] Kelly S M J. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 28, 806-807(1992).

    [26] Li J, Wang Y, Luo H, et al. Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter[J]. Photonics Research, 7, 103-109(2019).

    CLP Journals

    [1] Yang DUAN, Zhongxi LIN, Hui SU. 1.74 μm mode-locked semiconductor laser with a high-strained InGaAs/InGaAsP multi-quantum wells structure[J]. Infrared and Laser Engineering, 2024, 53(6): 20240079

    Tools

    Get Citation

    Copy Citation Text

    Yuxin Gao, Jixiang Chen, Zexian Zhang, Zeyu Zhan, Zhichao Luo. Research on a 1.7 μm all-fiber mode-locked Tm-doped fiber laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20220234

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Apr. 2, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email: Zhichao Luo (zcluo@scnu.edu.cn)

    DOI:10.3788/IRLA20220234

    Topics