Optics and Precision Engineering, Volume. 31, Issue 6, 950(2023)

Lightweight vehicle detection using long-distance dependence and multi-scale representation

Xiuping JING and Ying TIAN*
Author Affiliations
  • College of Computer Science and Software Engineering,University of Science and Technology Liaoning, Anshan114000,China
  • show less
    References(32)

    [1] [1] 1孙敏, 李免, 赵玉舟, 等. 基于实时交通状况和自适应像素分割的运动车辆检测[J]. 液晶与显示, 2021, 36(10): 1454-1462. doi: 10.37188/CJLCD.2020-0316SUNM, LIM, ZHAOY ZH, et al. Vehicle detection based on real-time traffic condition and adaptive pixel segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1454-1462.(in Chinese). doi: 10.37188/CJLCD.2020-0316

    [2] [2] 2张浩, 杨坚华, 花海洋. 基于FVOIRGAN-Detection的车辆检测[J]. 光学 精密工程, 2022, 30(12): 1478-1486. doi: 10.37188/OPE.20223012.1478ZHANGH, YANGJ H, HUAH Y. Vehicle detection based on FVOIRGAN-Detection[J]. Opt. Precision Eng., 2022, 30(12): 1478-1486.(in Chinese). doi: 10.37188/OPE.20223012.1478

    [3] [3] 3杨慧. 基于HOG和Haar-like融合特征的车辆检测[D]. 南京: 南京邮电大学, 2013.YANGH. Vehicle Detection Based on HOG and Haar-Like Features[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2013. (in Chinese)

    [4] [4] 4李星, 郭晓松, 郭君斌. 基于HOG特征和SVM的前向车辆识别方法[J]. 计算机科学, 2013, 40(S2): 329-332. doi: 10.3969/j.issn.1002-137X.2013.z2.082LIX, GUOX S, GUOJ B. HOG-feature and SVM based method for forward vehicle recognition[J]. Computer Science, 2013, 40(S2): 329-332.(in Chinese). doi: 10.3969/j.issn.1002-137X.2013.z2.082

    [5] [5] 5余永维, 韩鑫, 杜柳青. 基于Inception-SSD算法的零件识别[J]. 光学 精密工程, 2020, 28(8): 1799-1809.YUY W, HANX, DUL Q. Target part recognition based Inception-SSD algorithm[J]. Opt. Precision Eng., 2020, 28(8): 1799-1809.(in Chinese)

    [6] [6] 6王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGCH, ZHANGX F, LIUCH, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Opt. Precision Eng., 2021, 29(8): 1942-1954.(in Chinese). doi: 10.37188/OPE.20212908.1942

    [7] [7] 7李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学 精密工程, 2021, 29(6): 1448-1458. doi: 10.37188/OPE.20212906.1448LIJ Y, YANGJ, KONGB, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Opt. Precision Eng., 2021, 29(6): 1448-1458.(in Chinese). doi: 10.37188/OPE.20212906.1448

    [8] [8] 8秦鸿睿. 基于改进EfficientDet的车辆检测算法研究[D]. 合肥: 安徽建筑大学, 2022.QINH R. Research on Vehicle Detection Algorithm Based on Improved EfficientDet[D]. Hefei: Anhui Jianzhu University, 2022. (in Chinese)

    [9] [9] 9张洋. 改进的YOLOv3-tiny在城市交叉路口车辆检测中的应用[D]. 重庆: 重庆师范大学, 2020.ZHANGY. Application of Improved YOLOv3-tiny in Vehicle Detection at Urban Intersections[D]. Chongqing: Chongqing Normal University, 2020. (in Chinese)

    [10] [10] 10张云强. 基于YOLOv4-tiny的车辆检测与测距算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.ZHANGY Q. Resarch on Detection and Distance Measurement Algorithm of Vehicles Based on YOLOv4-tiny[D]. Harbin: Harbin University of Science and Technology, 2022. (in Chinese)

    [11] [11] 11赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究[J]. 图学学报, 2022, 43(5): 776-782.ZHAOL L, WANGX Y, ZHANGY, et al. Vehicle target detection based on YOLOv5s fusion SENet[J]. Journal of Graphics, 2022, 43(5): 776-782.(in Chinese)

    [12] REDMON J, DIVVALA S, GIRSHICK R et al. You Only Look Once: Unified, Real-Time Object Detection[C], 779-788(2016).

    [13] REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[C], 6517-6525(2017).

    [16] LIU S, QI L, QIN H F et al. Path Aggregation Network for Instance Segmentation[C], 8759-8768(2018).

    [17] WANG C Y, MARK LIAO H Y, WU Y H et al. CSPNet: a New Backbone That Can Enhance Learning Capability of CNN[C], 1571-1580(2020).

    [18] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [21] VASWANI A, SHAZEER N, PARMAR N et al. Attention is All You Need[C], 6000-6010(9).

    [25] HU J, SHEN L, SUN G. Squeeze and Excitation Networks[C], 7132-7141(2018).

    [26] LI D, YAO A B, CHEN Q F. PSConv: squeezing feature pyramid into one compact poly-scale convolutional layer[J]. Computer Vision, 615-632(2020).

    [28] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).

    [29] LIN T Y, GOYAL P, GIRSHICK R et al. Focal Loss for Dense Object Detection[C], 2999-3007(2017).

    [31] HE K M, ZHANG X Y, REN S Q et al. Deep Residual Learning for Image Recognition[C], 770-778(2016).

    CLP Journals

    [1] Zexian HUANG, Fanlu WU, Yao FU, Yu ZHANG, Xiaonan JIANG. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023, 31(15): 2295

    [2] Xiaomin YANG, Jun YANG. Ultra lightweight SAR image small object detection network[J]. Optics and Precision Engineering, 2025, 33(10): 1672

    Tools

    Get Citation

    Copy Citation Text

    Xiuping JING, Ying TIAN. Lightweight vehicle detection using long-distance dependence and multi-scale representation[J]. Optics and Precision Engineering, 2023, 31(6): 950

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 9, 2022

    Accepted: --

    Published Online: Apr. 4, 2023

    The Author Email: Ying TIAN (astianying@126.com)

    DOI:10.37188/OPE.20233106.0950

    Topics