Journal of Synthetic Crystals, Volume. 50, Issue 7, 1275(2021)

Inelastic Electron Tunneling-Based Excitation of Surface Plasmons

ZHENG Junsheng*, LIU Lufang, PAN Chenxinyu, GUO Xin, TONG Limin, and WANG Pan
Author Affiliations
  • [in Chinese]
  • show less
    References(92)

    [1] [1] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3/4): 131-314.

    [2] [2] SCHULLER J A, BARNARD E S, CAI W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

    [3] [3] BRONGERSMA M L, SHALAEV V M. The casefor plasmonics[J]. Science, 2010, 328(5977): 440-441.

    [4] [4] LAL S, LINK S, HALAS N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.

    [5] [5] GUO X, YING Y, TONG L. Photonic nanowires: from subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 2014, 47(2): 656-666.

    [6] [6] KRASAVIN A V, ZAYATS A V. Guiding light at the nanoscale: numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides[J]. Optics Letters, 2011, 36(16): 3127-3129.

    [7] [7] MACDONALD K F, SMSON Z L, STOCKMAN M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2009, 3(1): 55-58.

    [8] [8] WURTZ G A, POLLARD R, HENDREN W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107-111.

    [9] [9] KRASAVIN A V, ZAYATS A V. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator[J]. Physical Review Letters, 2012, 109(5): 053901.

    [10] [10] MELIKYAN A, ALLOATTI L, MUSLIJA A, et al. High-speed plasmonic phase modulators[J]. Nature Photonics, 2014, 8(3): 229-233.

    [11] [11] AYATA M, FEDORYSHYN Y, HENI W, et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 2017, 358(6363): 630-632.

    [12] [12] FALK A L, KOPPENS F H L, YU C L, et al. Near-field electrical detection of optical plasmons and single plasmon sources[J].Nature Physics, 2009, 5(7): 1-5.

    [13] [13] KNIGHT M W, SOBHANI H, NORDLANDER P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

    [14] [14] LIU N, TANG M L, HENTSCHEL M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nat Matter, 2011, 10(8): 631.

    [15] [15] DATHE A, ZIEGLER M, HBNER U, et al. Electrically excited plasmonic nanoruler for biomolecule detection[J]. Nano Letters, 2016, 16(9): 5728-5736.

    [16] [16] HILL M T, GATHER M C. Advances in small lasers[J]. Nature Photonics, 2014, 8(12): 908-918.

    [17] [17] MA R M, OULTON R F. Applications of nanolasers[J]. Nature Nanotechnology, 2019, 14(1): 12-22.

    [18] [18] WU H, GAO Y X, XU P Z, et al. Plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale[J]. Advanced Optical Materials, 2019, 7(17): 1900334.

    [19] [19] KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

    [20] [20] KRASAVIN A V, GINZBURG P, ZAYATS A V. Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description[J]. Laser & Photonics Reviews, 2018, 12(1): 1700082.

    [21] [21] WEEBER J C, KRENN J R, DEREUX A, et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes[J]. Physical Review B, 2001, 64(4): 045411.

    [22] [22] ROSZKIEWICZ A, NASALSKI W. Unidirectional SPP excitation at asymmetrical two-layered metal gratings[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(18): 185401.

    [23] [23] SNNICHSEN C, FRANZL T, WILK T, et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters, 2002, 88(7): 077402.

    [24] [24] HU M, NOVO C, FUNSTON A, et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. Journal of Materials Chemistry, 2008, 18(17): 1949-1960.

    [25] [25] RITCHIE R H. Plasma losses by fastelectrons in thin films[J]. Physical Review, 1957, 106(5): 874-881.

    [26] [26] BASHEVOY M V, JONSSON F, KRASAVIN A V, et al. Generation of traveling surface plasmon waves by free-electron impact[J]. Nano Letters, 2006, 6(6): 1113-1115.

    [27] [27] VESSEUR E J R, WAELE R D, KUTTGE M, et al. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy[J]. Nano Letters, 2007, 7(9): 2843-2846.

    [28] [28] NELAYAH J, KOCIAK M, STPHAN O, et al. Mapping surface plasmons on a single metallic nanoparticle[J]. Nature Physics, 2007, 3(5): 348-353.

    [29] [29] KOLLER D M, HOHENAU A, DITLBACHER H, et al. Organic plasmon-emitting diode[J]. Nature Photonics, 2008, 2(11): 684-687.

    [30] [30] MA Z, ZHANG X N, GUO X, et al. Surface plasmon excitation in silver nanowires directly deposited on a laser diode chip[J]. Applied Physics Letters, 2010, 96(5): 051119.

    [31] [31] RAI P, HARTMANN N, BERTHELOT J, et al. Electrical excitation of surface plasmons by an individual carbon nanotube transistor[J]. Physical Review Letters, 2013, 111(2): 026804.

    [32] [32] SEO M K, HUANG K C Y, BRONGERSMA M L. Electrically-driven subwavelength optical nanocircuits[J]. Nature Photonics, 2014, 8(3):244-249.

    [33] [33] LIU Y, ZHANG J, LIU H, et al. Electrically driven monolithic subwavelength plasmonic interconnect circuits[J]. Science Advances, 2017, 3(10): e1701456.

    [34] [34] ZHU W Q, ESTEBAN R, BORISOV A G, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7(1): 1-14.

    [35] [35] XU D, XIONG X, WU L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics[J]. Advances in Optics and Photonics, 2018, 10(4): 703-756.

    [36] [36] BAUMBERG J J, AIZPURUA J, MIKKELSEN M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 2019, 18(7): 668-678.

    [37] [37] ZHOU Z K, LIU J F, BAO Y J, et al. Quantum plasmonics get applied[J]. Progress in Quantum Electronics, 2019, 65: 1-20.

    [38] [38] CIRAC C, HILL R T, MOCK J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074.

    [39] [39] SAVAGE K J, HAWKEYE M M, ESTEBAN R, et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 2012, 491(7425): 574-577.

    [40] [40] TAN S F, WU L, YANG J K W, et al. Quantum plasmon resonances controlled by molecular tunnel junctions[J]. Science, 2014, 343(6178): 1496-1499.

    [41] [41] KERN J, KULLOCK R, PRANGSMA J, et al. Electrically driven optical antennas[J]. Nature Photonics, 2015, 9(9): 582-586.

    [42] [42] BENZ F, SCHMIDT M K, DREISMANN A, et al. Single-molecule optomechanics in “picocavities”[J]. Science, 2016, 354(6313): 726-729.

    [43] [43] DOPPAGNE B, CHONG M C, BULOU H, et al. Electrofluorochromism at the single-molecule level[J]. Science, 2018, 361(6399): 251-255.

    [44] [44] GARG M, KERN K. Attosecond coherent manipulation of electrons in tunneling microscopy[J]. Science, 2020, 367(6476): 411-415.

    [45] [45] BINNING G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopyscanning tunneling microscopy[M]. Manhattan: John Wiley & Sons Inc, 1982.

    [46] [46] KHANNA S K, LAMBE J. Inelastic electron tunneling spectroscopy[J]. Science, 1983, 220(4604): 1345-1351.

    [47] [47] REED M A. Inelastic electron tunneling spectroscopy[J]. Materials Today, 2008, 11(11): 46-50.

    [48] [48] LAMBE J, MCCARTHY S L. Light emission from inelastic electron tunneling[J]. Physical Review Letters, 1976, 37(14): 923-925.

    [49] [49] DAVIS L C. Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions[J]. Physical Review B, 1977, 16(6): 2482-2490.

    [50] [50] ADAMS A, WYSS J C, HANSMA P K. Possible observation of local plasmon modes excited by electrons tunneling through junctions[J]. Physical Review Letters, 1979, 42(14): 912-915.

    [51] [51] KIRTLEY J R, THEIS T N, TSANG J C. Diffraction-grating-enhanced light emission from tunnel junctions[J]. Applied Physics Letters, 1980, 37(5): 435-437.

    [52] [52] USHIODA, RUTLEDGE, PIERCE. Prism-coupled light emission from tunnel junctions[J]. Physical Review Letters, 1985, 54(3): 224-226.

    [53] [53] PERSSON B, BARATOFF A. Theory of photon emission in electrontunneling to metallic particles[J]. Physical Review Letters, 1992, 68(21): 3224-3227.

    [54] [54] DOWNES A, TAYLOR M E, WELLAND M E. Two-sphere model of photon emission from the scanning tunneling microscope[J]. Physical Review B, 1998, 57(11): 6706-6714.

    [55] [55] GIMZEWSKI J K, REIHL B, COOMBS J H, et al. Photon emission with the scanningtunneling microscope[J]. Zeitschrift Für Physik B Condensed Matter, 1988, 72(4): 497-501.

    [56] [56] COOMBS J H, GIMZEWSKI J K, REIHL B, et al. Photon emission experiments with the scanning tunnelling microscope[J]. Journal of Microscopy, 1988, 152(2): 325-336.

    [57] [57] SILLY F,GUSEV A O, TALEB A, et al. Coupled plasmon modes in an ordered hexagonal monolayer of metal nanoparticles: a direct observation[J]. Physical Review Letters, 2000, 84(25): 5840-5843.

    [58] [58] MOAL E L, MARGUET S, ROGEZ B, et al. An electrically excited nanoscale light source with active angular control of the emitted light[J]. Nano Letters, 2013, 13(9): 4198-4205.

    [59] [59] MOAL E L, MARGUET S, CANNESON D, et al. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle[J]. Physical Review B, 2016, 93(3): 035418.

    [60] [60] CAO S Y, ZAPATA-HERRERA M, CAMPOS A, et al. Probing the radiative electromagnetic local density of states in nanostructures with a scanning tunneling microscope[J]. ACS Photonics, 2020, 7(5): 1280-1289.

    [61] [61] MARTN-JIMNEZ A, FERNNDEZ-DOMNGUEZ A I, LAUWAET K, et al. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM[J]. Nature Communications, 2020, 11: 1021.

    [62] [62] KUHNKE K,GROE C, MERINO P, et al. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces[J]. Chemical Reviews, 2017, 117(7): 5174-5222.

    [63] [63] ZHANG L, YU Y J, CHEN L G, et al. Electrically driven single-photon emission from an isolated single molecule[J]. Nature Communications, 2017, 8(1):580.

    [64] [64] LUO Y, CHEN G, ZHANG Y, et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity[J]. Physical Review Letters, 2019, 122(23): 233901.

    [65] [65] QIU X H, NAZIN G V, HO W. Vibrationally resolved fluorescence excited with submolecular precision[J]. Science, 2003, 299(5606): 542-546.

    [66] [66] ZHANG Y, LUO Y, ZHANG Y, et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 2016, 531(7596): 623-627.

    [67] [67] FVRIER P, GABELLI J. Tunneling time probed by quantum shot noise[J]. Nature Communications, 2018, 9: 4940.

    [68] [68] JOHANSSON P. Light emission from a scanning tunneling microscope: fully retarded calculation[J]. Physical Review B, 1998, 58(16): 10823-10834.

    [69] [69] RENDELL R W, SCALAPINO D J. Surface plasmons confined by microstructures on tunnel junctions[J]. Physical Review B, 1981, 24(6): 3276-3294.

    [70] [70] PARZEFALL M, BHARADWAJ P, JAIN A, et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions[J]. Nature Nanotechnology, 2015, 10(12): 1058-1063.

    [71] [71] QIAN H L, HSU S W, GURUNATHA K, et al. Efficient light generation from enhanced inelastic electrontunnelling[J]. Nature Photonics, 2018, 12(8): 485-488.

    [72] [72] HE X B, TANG J B, HU H T, et al. Electrically driven optical antennas based on template dielectrophoretic trapping[J]. ACS Nano, 2019, 13(12): 14041-14047.

    [73] [73] USKOV A V, KHURGIN J B, PROTSENKO I E, et al. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling[J]. Nanoscale, 2016, 8(30): 14573-14579.

    [74] [74] QIN J, LIU Y J, LUO H W, et al. Tunable light emission by electrically excited plasmonic antenna[J]. ACS Photonics, 2019, 6(10): 2392-2396.

    [75] [75] LIU Y J, JIANG Z J, QIN J, et al. Localized surface plasmon mode-enhanced spectrum-tunable radiation in electrically driven plasmonic antennas[J]. Optics Letters, 2020, 45(19): 5506-5509.

    [76] [76] WANG P, KRASAVIN A V, NASIR M E, et al. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials[J].Nat Nanotechnol, 2018, 13(2): 159-164.

    [77] [77] KRASAVIN A V, WANG P, NASIR M E, et al. Tunneling-induced broadband and tunable optical emission from plasmonic nanorod metamaterials[J]. Nanophotonics, 2020, 9(2): 427-434.

    [78] [78] WANG P, NASIR M E, KRASAVIN A V, et al. Optoelectronic synapses based on hot-electron-induced chemical processes[J]. Nano Letters, 2020, 20(3): 1536-1541.

    [79] [79] BHARADWAJ P, BOUHELIER A, NOVOTNY L. Electrical excitation of surfaceplasmons[J]. Physical Review Letters, 2011, 106(22): 226802.

    [80] [80] CAZIER N, BURET M, USKOV A V, et al. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna[J]. Optics Express, 2016, 24(4): 3873-3884.

    [81] [81] DU W, WANG T, CHU H S, et al. Highly efficient on-chip direct electronic-plasmonic transducers[J]. Nature Photonics, 2017, 11(10): 623-627.

    [82] [82] ZHANG C, HUGONIN J P, COUTROT A L, et al. Antenna surface plasmon emission by inelastic tunneling[J]. Nature Communications, 2019, 10: 4949.

    [83] [83] HUANG B H, GAO S P, LIU Y, et al. Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction[J]. Optics Letters, 2019, 44(9): 2330-2333.

    [84] [84] HUANG B H, LIU Y, CHUA S, et al. Plasmonic-enhanced light emission from a waveguide-integrated tunnel junction[J].Josa B, 2020, 37(7): 2171-2178.

    [85] [85] DODERER M, PARZEFALL M, JOERG A, et al. Light emission from a waveguide integrated MOS tunnel junction[J]. 2019: FW3C.1.

    [86] [86] DONG Z G, CHU H S, ZHU D, et al. Electrically-excited surface plasmon polaritons with directionality control[J]. ACS Photonics, 2015, 2(3): 385-391.

    [87] [87] WANG T, BOER-DUCHEMIN E, ZHANG Y, et al. Excitation of propagating surface plasmons with a scanning tunnelling microscope[J]. Nanotechnology, 2011, 22(17): 175201.

    [88] [88] JIANG Z J, WANG L. Unidirectional propagation of electrically driven surface plasmon polaritons: a numerical study[J]. Nanotechnology, 2020, 31(45): 455207.

    [89] [89] DU W, WANG T, CHU H S, et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions[J]. Nature Photonics, 2016, 10(4): 274-280.

    [90] [90] DU W, HAN Y M, HU H T, et al. Directional excitation of surface plasmon polaritons via molecular through-bond tunneling across double-barrier tunnel junctions[J]. Nano Letters, 2019, 19(7): 4634-4640.

    [91] [91] GURUNARAYANAN S P, VERELLEN N, ZHARINOV V S, et al. Electrically driven unidirectional optical nanoantennas[J]. Nano Letters, 2017, 17(12): 7433-7439.

    [92] [92] KULLOCK R, OCHS M, GRIMM P, et al. Electrically-driven Yagi-Uda antennas for light[J]. Nature Communications, 2020, 11: 115.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Junsheng, LIU Lufang, PAN Chenxinyu, GUO Xin, TONG Limin, WANG Pan. Inelastic Electron Tunneling-Based Excitation of Surface Plasmons[J]. Journal of Synthetic Crystals, 2021, 50(7): 1275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 6, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email: ZHENG Junsheng (zhengjunsheng@zju.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics