Laser & Optoelectronics Progress, Volume. 56, Issue 5, 051005(2019)

Real-Time and Accurate Semantic Segmentation Based on Separable Residual Modules

Wenchao Lu*, Yanwei Pang, Yuqing He, and Jian Wang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(14)
    Two types of convolution filters. (a) Standard 3D convolution filters; (b) depthwise separable convolution filters
    Three types of residual modules. (a) Non-bottleneck residual module; (b) bottleneck residual module; (c) depthwise separable residual module
    Parallel down-sampling block
    Dilated convolution. (a) Standard convolution filters; (b) 2-dilated convolution filters; (c) separable residual module combined with dilated convolution
    Network architecture
    Separable residual module combined with channel reduction. (a) 1/2 channels; (b) 1/4 channels
    Qualitative comparison between SRNet and ENet. (a) Input image; (b) ground truth; (c) ENet result; (d) SRNet result
    • Table 1. Weight sizes of different residual blocks

      View table

      Table 1. Weight sizes of different residual blocks

      Residual blockBt /kNon-Bt /kDS-Bt /kDS-Non-Bt /k
      In_Out_C644.3536.862.774.67
      25669.63589.8235.6567.84
    • Table 2. Detailed descriptions of our network

      View table

      Table 2. Detailed descriptions of our network

      NetworkBlockTypeIn-Res /(pixel×pixel)In-COut-Res /(pixel×pixel)Out-C
      Encoder1Down-sampling1024×5123512×25616
      2Down-sampling512×25616256×12864
      3-75×DS-Non-Bt256×12864256×12864
      8Down-sampling256×12864128×64128
      9-162×DS-Non-Bt(rate=2,4,8,16)128×64128128×64128
      Decoder17Deconvolution128×64128128×6464
      18-192×DS-Non-Bt256×12864256×12864
      20Deconvolution256×12864512×25616
      21-222×DS-Non-Bt512×25616512×25616
      23Deconvolution512×256161024×512C
    • Table 3. Accuracy and efficiency of each residual module

      View table

      Table 3. Accuracy and efficiency of each residual module

      ModuleMiou /%Parameter /106Time /ms
      Bt57.120.3118
      Non-Bt62.193.0335
      DS-Bt54.360.2215
      DS-Non-Bt61.370.4924
    • Table 4. Accuracy and efficiency of each residual module with different channels

      View table

      Table 4. Accuracy and efficiency of each residual module with different channels

      ModuleChannelMiou /%Parameter /106Time /ms
      Btn57.120.3118
      Non-Btn/452.380.2013
      DS-Non-Btn/453.230.0511
      Bt4n60.814.7145
      Non-Btn62.193.0335
      DS-Non-Btn61.370.4924
    • Table 5. Separable residual module combined with channel reduction

      View table

      Table 5. Separable residual module combined with channel reduction

      ModuleMiou /%Parameter /kTime /ms
      DW-Non-Bt67.8249188
      DW-Bt-1/264.4732170
      DW-Bt-1/460.8923662
    • Table 6. Separation accuracy of each network%

      View table

      Table 6. Separation accuracy of each network%

      ModelClassRoaSidBuiWalFenPolTLiTSiVegTerSkyPerRidCarTruBusTraMotBic
      SegNet56.9596.473.284.028.429.035.739.845.187.063.891.862.842.889.338.143.144.135.851.9
      SQ59.8496.975.487.831.635.750.952.061.790.965.893.073.842.691.518.841.233.334.059.9
      ENet58.2896.374.275.032.233.243.434.144.088.661.490.665.538.490.636.950.548.138.855.4
      SRNet67.8697.178.689.649.351.256.957.566.390.457.092.271.848.691.755.770.258.340.366.0
    • Table 7. Separation efficiency of each network

      View table

      Table 7. Separation efficiency of each network

      Model2048×10241024×512512×2561920×10801280×720640×360
      Time /msFramerate /(frame·s-1)Time /msFramerate /(frame·s-1)Time /msFramerate /(frame·s-1)Time /msFramerate /(frame·s-1)Time /msFramerate /(frame·s-1)Time /msFramerate /(frame·s-1)
      SegNet641216964124637128936914
      SQ591719536167581733309111
      ENet492013777143462121467135
      SRNet881224426167881237279111
    Tools

    Get Citation

    Copy Citation Text

    Wenchao Lu, Yanwei Pang, Yuqing He, Jian Wang. Real-Time and Accurate Semantic Segmentation Based on Separable Residual Modules[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 29, 2018

    Accepted: Sep. 27, 2018

    Published Online: Jul. 31, 2019

    The Author Email: Wenchao Lu (luwc@tju.edu.cn)

    DOI:10.3788/LOP56.051005

    Topics