Chinese Journal of Lasers, Volume. 42, Issue 7, 702003(2015)
Molecular Dynamics Simulation of Dislocation Development in Monocrystalline Copper induced by Warm Laser Peening
[1] [1] C Ye, Y L Liao, S Suslov. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Science and Engineering: A, 2014, 609: 195-203.
[2] [2] Meng Xiankai, Huang Shu, An Zhongwei, et al.. Finite element analysis of shock wave pressure induced by warm laser peening[J]. Acta Optica Sinica, 2013, 33(s1): s114014.
[3] [3] C Ye, S Sergey, B J Kim, et al.. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025.
[4] [4] N N Nedialkov, S E Imamova, P A Atanasov, et al.. Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation[J]. Applied Surface Science, 2005, 247(1-4): 243-248.
[5] [5] Liu Xuan, Wang Yang. Femtosecond laser ablation of metals: a molecular dynamics simulation study[J]. Chin Opt Lett, 2005, 3(1): 57-59.
[6] [6] E M Bringa, J U Cazamias, P Erhart. Atomistic shock Hogoniot simulation of single-crystal copper[J]. Journal of Applied Physics, 2004, 96(7): 3793-3799.
[7] [7] Lu Jinzhong, Luo Kaiyu, Feng Aixin, et al.. Micro-structural enhancement mechanism of LY2 aluminum alloy by means of a single laser shock processing[J]. Chinese J Lasers, 2010, 37(10): 2662-2666.
[9] [9] G Tani, L Orazi, A Fortunato, et al.. Warm laser shock peening: new developments and process optimization[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 219-222.
[10] [10] M S Daw, M I Baskes. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals[J]. Phys Rev Lett, 1983, 50(17): 1285-1288.
[11] [11] Chen Kaiguo, Zhu Wenjun, Ma Wen, et al.. Propagation of shockwave in nanocrystalline copper molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(2): 1225-1232.
[12] [12] LAMMPS Documentation manual[M]. http://lammps.sandia.gov/doc/Manual.html. 2013.
[13] [13] Bai Qingshun, Tong Zhen, Liang Yingchun. Simulation of scale dependency on tensile mechanical properties of single crystal copper Nano-Rod[J]. Acta Metallurgica Sinica, 2010, 46(10): 1173-1180.
[14] [14] J Friedel. Dislocations[M]. Wang Yu, Transl. Beijing: Science Press, 1984: 93-95.
[15] [15] Wang Yanan, Chen ShuJiang, Dong Xichun. Dislocation Theory and Application[M]. Beijing: Metallurgical Industry Press, 2007: 80-82.
[16] [16] He Anmin, Shao Jianli, Qin Chengsen, et al.. Molecular dynamics simulation of the anisotropy of surface melting of metal Al[J]. Acta Physica Sinica, 2009, 58(8): 5667-5672.
[17] [17] R C Picu, A Majorell. Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part Ⅱ: constitutive modeling[J]. Mat Sci Eng A, 2002, 326(2): 306-316.
Get Citation
Copy Citation Text
Meng Xiankai, Zhou Jianzhong, Huang Shu, Sheng Jie, Su Chun, Yang Xiangwei. Molecular Dynamics Simulation of Dislocation Development in Monocrystalline Copper induced by Warm Laser Peening[J]. Chinese Journal of Lasers, 2015, 42(7): 702003
Category:
Received: Dec. 15, 2014
Accepted: --
Published Online: Sep. 24, 2022
The Author Email: Xiankai Meng (mengdetiankong10@126.com)