Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0428005(2024)

DeepLabV3_DHC: Semantic Segmentation of Urban Unmanned Aerial Vehicle Remote Sensing Image

Guowen Sun1, Xiaobo Luo1、*, and Kunqiang Zhang2
Author Affiliations
  • 1College of Computer Sciences and Technology, Chongqing Engineering Research Center for Spatial Big Data Intelligent Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2School of Information Engineering and Automation, Kunming University of Technology, Kunming 650500, Yunnan, China
  • show less
    Figures & Tables(13)
    DeepLabV3_DHC network structure diagram
    Three groups of 3×3 dilated convolved receptive fields. (a) The dilated ratio is 1; (b) the dilated ratio is 2; (c) the dilated ratio is 3
    Ordinary convolution and depth separable convolution. (a) Ordinary convolution; (b) depth separable convolution
    Depthwise separable hybrid dilated convolution
    Change in the number of dense upsampling channels
    Mechanism of attention
    Original image and corresponding label diagram
    Original image and local histogram equalization
    Visualization result chart. (a) Original image; (b) Label image; (c) DeepLabV3_ plus image segmentation; (d) DeepLabV3_ DHC image segmentation
    • Table 1. Test set numerical evaluation

      View table

      Table 1. Test set numerical evaluation

      ModelBackboneMIOU /%MPA /%

      DeepLabV3_plus

      DeepLabV3_plus

      DeepLabV3_plus

      DeepLabV3_plus

      DeepLabV3_plus

      DeepLabV3_plus

      DeepLabV3_DHC

      DeepLabV3_DHC

      DeepLabV3_DHC

      DeepLabV3_DHC

      DeepLabV3_DHC

      DeepLabV3_DHC

      MobilenetV2

      MobilenetV3

      Resnet101

      Resnet152

      Resnext101

      Xception

      MobilenetV2

      MobilenetV3

      Resnet101

      Resnet152

      Resnext101

      Xception

      66.58

      63.51

      73.67

      75.58

      75.68

      78.22

      71.73

      70.68

      78.10

      76.19

      78.27

      80.99

      76.63

      74.13

      84.97

      86.37

      85.99

      86.48

      80.65

      79.49

      85.81

      86.64

      86.79

      90.09

    • Table 2. Comparison of parameter number and calculation amount

      View table

      Table 2. Comparison of parameter number and calculation amount

      ModelBackboneParameters /106FLOPs /109
      DeepLabV3_plusMobilenetV25.83126.433
      DeepLabV3_DHCMobilenetV24.2949.215
      DeepLabV3_plusXception54.70983.420
      DeepLabV3_DHCXception51.51365.195
      DeepLabV3_plusMobilenetV311.72530.535
      DeepLabV3_DHCMobilenetV39.57212.835
      DeepLabV3_plusResnet10159.354199.408
      DeepLabV3_DHCResnet10156.181181.863
    • Table 3. Different convolution values in the test set

      View table

      Table 3. Different convolution values in the test set

      Convolution sizeDilated rateMIOU /%MPA /%

      3×3

      5×5

      7×7

      9×9

      11×11

      13×13

      15×15

      1,3,8

      1,3,5

      1,2,3

      1,2,3

      1,2,3

      1,2,3

      1,2,3

      80.99

      81.21

      80.58

      80.43

      80.63

      81.03

      80.73

      90.09

      89.41

      89.07

      89.68

      88.15

      88.97

      88.92

    • Table 4. Comparison of ablation experiments

      View table

      Table 4. Comparison of ablation experiments

      ModelMIOU /%MPA /%

      DeepLabV3_DHC

      (no DHC)

      71.7878.30

      DeepLabV3_DHC

      (no DUC)

      70.8382.83
      DeepLabV3_DHC(no attention)77.1183.78
      DeepLabV3_DHC80.9990.09
    Tools

    Get Citation

    Copy Citation Text

    Guowen Sun, Xiaobo Luo, Kunqiang Zhang. DeepLabV3_DHC: Semantic Segmentation of Urban Unmanned Aerial Vehicle Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0428005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 17, 2023

    Accepted: Jun. 1, 2023

    Published Online: Feb. 26, 2024

    The Author Email: Xiaobo Luo (luoxb@cqupt.edu.cn)

    DOI:10.3788/LOP230886

    CSTR:32186.14.LOP230886

    Topics