Chinese Journal of Lasers, Volume. 49, Issue 15, 1507103(2022)
Recent Progress in Femtosecond Laser in Treatment of Ophthalmic Keratoconus
[1] Ferrari G, Rama P. The keratoconus enigma: a review with emphasis on pathogenesis[J]. The Ocular Surface, 18, 363-373(2020).
[2] Buzzonetti L, Bohringer D, Liskova P et al. Keratoconus in children: a literature review[J]. Cornea, 39, 1592-1598(2020).
[3] Mukhtar S, Ambati B K. Pediatric keratoconus: a review of the literature[J]. International Ophthalmology, 38, 2257-2266(2018).
[4] Imbornoni L M, McGhee C N J, Belin M W. Evolution of keratoconus: from diagnosis to therapeutics[J]. Klinische Monatsblatter Fur Augenheilkunde, 235, 680-688(2018).
[5] Bykhovskaya Y, Rabinowitz Y S. Update on the genetics of keratoconus[J]. Experimental Eye Research, 202, 108398(2021).
[6] Lucas S E M, Burdon K P. Genetic and environmental risk factors for keratoconus[J]. Annual Review of Vision Science, 15, 25-46(2020).
[7] Parker J S, van Dijk K, Melles G R J. Treatment options for advanced keratoconus: a review[J]. Survey of Ophthalmology, 60, 459-480(2015).
[8] Bamdad S, Sedaghat M R, Yasemi M et al. Intracorneal stromal ring can affect the biomechanics of ectatic cornea[J]. Journal of Ophthalmology, 2020, 4274037(2020).
[9] Saad S, Saad R, Jouve L et al. Corneal crosslinking in keratoconus management[J]. Journal Français d’Ophtalmologie, 43, 1078-1095(2020).
[10] de Aldana J R V, Méndez C, Roso L et al. Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments[J]. Journal of Physics D: Applied Physics, 38, 2764-2768(2005).
[11] Wei R L, Wang M M, Zhu Z X et al. High-power femtosecond pulse generation from an all-fiber Er-doped chirped pulse amplification system[J]. IEEE Photonics Journal, 12, 19621671(2020).
[12] Li D J, Wang H L, Yang G L et al. Comprehension and usage of ordinary terminologies for laser taking peak power as example[J]. Chinese Optics, 8, 873-880(2015).
[13] Tian J R, Song Y R, Wang L. Error analysis of peak power formula in pulsed lasers[J]. Chinese Optics, 7, 253-259(2014).
[14] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics. Physical Society (Great Britain), 75, 056401(2012).
[15] Oraevsky A A, da Silva L B, Rubenchik A M et al. Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 801-809(1996).
[16] van Tilborg J, Schroeder C B, Filip C V et al. Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation[J]. Physical Review Letters, 96, 014801(2006).
[17] Parafita-Fernández A, Teus M. Femtosecond laser in situ keratomileusis flap creation[J]. Journal of Cataract and Refractive Surgery, 44, 1297(2018).
[18] Homer N, Jurkunas U V. The use of femtosecond laser in refractive and cataract surgery[J]. International Ophthalmology Clinics, 57, 1-10(2017).
[19] Kim P, Sutton G L, Rootman D S. Applications of the femtosecond laser in corneal refractive surgery[J]. Current Opinion in Ophthalmology, 22, 238-244(2011).
[20] Salah-Mabed I, Moran S, Perez E et al. Anatomical and visual outcomes after LASIK performed in myopic eyes with the WaveLight® refractive suite (Alcon® Laboratories Inc., USA)[J]. Journal of Ophthalmology, 2020, 7296412(2020).
[21] Bolivar G, Garcia-Gonzalez M, Laucirika G et al. Intraocular pressure rises during laser in situ keratomileusis: comparison of 3 femtosecond laser platforms[J]. Journal of Cataract & Refractive Surgery, 45, 1172-1176(2019).
[22] Lubatschowski H. Overview of commercially available femtosecond lasers in refractive surgery[J]. Journal of Refractive Surgery, 24, S102-S107(2008).
[23] Sekundo W, Kunert K S, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study[J]. The British Journal of Ophthalmology, 95, 335-339(2011).
[24] Gamal Ebidalla Elghobaier M, Khalil Ibrahiem M F, Shawkat Abdelhalim A et al. Clinical and surgical outcomes of femtosecond laser-assisted cataract surgery (FLACS) on hard cataracts in the Egyptian population[J]. Clinical Ophthalmology, 21, 1383-1389(2020).
[25] Chamberlain W D. Femtosecond laser-assisted deep anterior lamellar keratoplasty[J]. Current Opinion in Ophthalmology, 30, 256-263(2019).
[26] Graef S, Maier P, Boehringer D et al. Femtosecond laser-assisted repeat keratoplasty: a case series[J]. Cornea, 30, 687-691(2011).
[27] Nagy Z, Takacs A, Filkorn T et al. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery[J]. Journal of Refractive Surgery, 25, 1053-1060(2009).
[28] Ostovic M, Klaproth O K, Hengerer F H et al. Light microscopy and scanning electron microscopy analysis of rigid curved interface femtosecond laser-assisted and manual anterior capsulotomy[J]. Journal of Cataract & Refractive Surgery, 39, 1587-1592(2013).
[29] Tan D T, Dart J K, Holland E J et al. Corneal transplantation[J]. The Lancet, 379, 1749-1761(2012).
[30] Seitz B, Hager T, Langenbucher A et al. Reconsidering sequential double running suture removal after penetrating keratoplasty[J]. Cornea, 37, 301-306(2017).
[31] Seitz B, Hager T, Langenbucher A et al. Reconsidering sequential double running suture removal after penetrating keratoplasty: a prospective randomized study comparing excimer laser and motor trephination[J]. Cornea, 37, 301-306(2018).
[32] Bourne W M, Solano J M, Hodge D O. Keratometric astigmatism after suture removal in penetrating keratoplasty: double running versus single running suture techniques[J]. American Journal of Ophthalmology, 137, 603(2004).
[33] Maier P, Böhringer D, Birnbaum F et al. Improved wound stability of top-hat profiled femtosecond laser-assisted penetrating keratoplasty in vitro[J]. Cornea, 31, 963-966(2012).
[34] Ignacio T S, Nguyen T B, Chuck R S et al. Top hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model[J]. Cornea, 25, 336-340(2006).
[35] Hoffart L, Proust H, Matonti F et al. Short-term results of penetrating keratoplasty performed with the femtec femtosecond laser[J]. American Journal of Ophthalmology, 146, 50-55(2008).
[36] Gaster R N, Dumitrascu O, Rabinowitz Y S. Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus[J]. The British Journal of Ophthalmology, 96, 1195-1199(2012).
[37] Shivanna Y, Nagaraja H, Kugar T et al. Femtosecond laser enabled keratoplasty for advanced keratoconus[J]. Indian Journal of Ophthalmology, 61, 469-472(2013).
[38] Chen Y Q, Hu D N, Xia Y et al. Comparison of femtosecond laser-assisted deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus[J]. BMC Ophthalmology, 27, 144(2015).
[39] Kamiya K, Takahashi M, Igarashi A et al. Visual performance in eyes undergoing femtosecond laser-assisted keratoplasty for advanced keratoconus[J]. Scientific Reports, 9, 6442(2019).
[40] Abdelkader A. Corneal biomechanical properties and their correlates with healing process after descemetic versus pre-descemetic lamellar keratoplasty[J]. European Journal of Ophthalmology, 23, 652-657(2013).
[41] Boynton G E, Woodward M A. Evolving techniques in corneal transplantation[J]. Current Surgery Reports, 3, 2(2015).
[42] Anwar M, Teichmann K D. Big-bubble technique to bare descemet’s membrane in anterior lamellar keratoplasty[J]. Journal of Cataract & Refractive Surgery, 28, 398-403(2002).
[43] Seitz B, Cursiefen C, El-Husseiny M et al. DALK and penetrating laser keratoplasty for advanced keratoconus[J]. Der Ophthalmologe, 110, 839-848(2013).
[44] Knutsson K A, Rama P, Paganoni G. Modified big-bubble technique compared to manual dissection deep anterior lamellar keratoplasty in the treatment of keratoconus[J]. Acta Ophthalmologica, 93, 431-438(2015).
[45] Blériot A, Martin E, Lebranchu P et al. Comparison of 12-month anatomic and functional results between Z6 femtosecond laser-assisted and manual trephination in deep anterior lamellar keratoplasty for advanced keratoconus[J]. Journal Français d’Ophtalmologie, 40, e193-e200(2017).
[46] Fung S S M, Aiello F, Maurino V. Outcomes of femtosecond laser-assisted mushroom-configuration keratoplasty in advanced keratoconus[J]. Eye, 30, 553-561(2016).
[47] Buzzonetti L, Petrocelli G, Valente P et al. Refractive outcome of keratoconus treated by big-bubble deep anterior lamellar keratoplasty in pediatric patients: two-year follow-up comparison between mechanical trephine and femtosecond laser assisted techniques[J]. Eye and Vision, 6, 1(2019).
[48] Shehadeh-Mashor R, Chan C C, Bahar I et al. Comparison between femtosecond laser mushroom configuration and manual trephine straight-edge configuration deep anterior lamellar keratoplasty[J]. The British Journal of Ophthalmology, 98, 35-39(2014).
[49] Li S X, Wang T, Bian J et al. Precisely controlled side cut in femtosecond laser-assisted deep lamellar keratoplasty for advanced keratoconus[J]. Cornea, 35, 1289-1294(2016).
[50] Li H, Chen M, Dong Y L et al. Comparison of long-term results after manual and femtosecond assisted corneal trephination in deep anterior lamellar keratoplasty for keratoconus[J]. International Journal of Ophthalmology, 13, 567-573(2020).
[51] Lu Y, Shi Y H, Yang L P et al. Femtosecond laser-assisted deep anterior lamellar keratoplasty for keratoconus and keratectasia[J]. International Journal of Ophthalmology, 7, 638-643(2014).
[52] Alio J L, Abdelghany A A, Barraquer R et al. Femtosecond laser assisted deep anterior lamellar keratoplasty outcomes and healing patterns compared to manual technique[J]. BioMed Research International, 2015, 397891(2015).
[53] Shousha M A, Yoo S H, Kymionis G D et al. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty[J]. Ophthalmology, 118, 315-323(2011).
[54] Yoo S H, Kymionis G D, Koreishi A et al. Femtosecond laser-assisted sutureless anterior lamellar keratoplasty[J]. Ophthalmology, 115, 1303-1307(2008).
[55] Coskunseven E, Kymionis G D, Tsiklis N S et al. One-year results of intrastromal corneal ring segment implantation (KeraRing) using femtosecond laser in patients with keratoconus[J]. American Journal of Ophthalmology, 145, 775-779(2008).
[56] Frost N A, Wu J, Lai T F et al. A review of randomized controlled trials of penetrating keratoplasty techniques[J]. Ophthalmology, 113, 942-949(2006).
[57] Hashemi H, Alvani A, Seyedian M A et al. Appropriate sequence of combined intracorneal ring implantation and corneal collagen cross-linking in keratoconus: a systematic review and meta-analysis[J]. Cornea, 37, 1601-1607(2018).
[58] Fahd D C, Alameddine R M, Nasser M et al. Refractive and topographic effects of single-segment intrastromal corneal ring segments in eyes with moderate to severe keratoconus and inferior cones[J]. Journal of Cataract and Refractive Surgery, 41, 1434-1440(2015).
[59] Bedi R, Touboul D, Pinsard L et al. Refractive and topographic stability of Intacs in eyes with progressive keratoconus: five-year follow-up[J]. Journal of Refractive Surgery, 28, 392-396(2012).
[60] Kymionis G D, Siganos C S, Tsiklis N S et al. Long-term follow-up of Intacs in keratoconus[J]. American Journal of Ophthalmology, 143, 236-244(2007).
[61] Kamburoglu G, Ertan A, Saraçbasi O. Measurement of depth of Intacs implanted via femtosecond laser using Pentacam[J]. Journal of Refractive Surgery, 25, 377-382(2009).
[62] Monteiro T, Alfonso J F, Franqueira N et al. Predictability of tunnel depth for intrastromal corneal ring segments implantation between manual and femtosecond laser techniques[J]. Journal of Refractive Surgery, 34, 188-194(2018).
[63] Monteiro T, Alfonso J F, Freitas R et al. Comparison of complication rates between manual and femtosecond laser-assisted techniques for intrastromal corneal ring segments implantation in keratoconus[J]. Current Eye Research, 44, 1291-1298(2019).
[64] Kapitánová K, Nikel J. Femtosecond laser-assisted intrastromal corneal segment implantation-our experience[J]. Ceska a Slovenska Oftalmologie, 74, 31-36(2018).
[65] Hashemian S J, Farshchian N, Foroutam-Jazi A et al. Visual and refractive outcomes and tomographic changes after femtosecond laser-assisted intrastromal corneal ring segment implantation in patients with keratoconus[J]. Journal of Ophthalmic & Vision Research, 13, 376-382(2018).
[66] Abdellah M M, Ammar H G. Femtosecond laser implantation of a 355-degree intrastromal corneal ring segment in keratoconus: a three-year follow-up[J]. Journal of Ophthalmology, 2019, 6783181(2019).
[67] Coskunseven E, Kymionis G D, Tsiklis N S et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus[J]. Acta Ophthalmologica, 89, 54-57(2011).
[68] Titiyal J S, Titiyal J S, Kaur M, Kaur M, Rathi A, Shaikh F et al. Small incision lenticule extraction (SMILE) techniques: patient selection and perspectives[J]. Clinical Ophthalmology, 5, 1685-1699(2018).
et alLearning curve of small incision lenticule extraction: challenges and complications[J]. Cornea, 36, 1377-1382(2017).
[70] Damgaard I B, Ivarsen A, Hjortdal J. Biological lenticule implantation for correction of hyperopia: an ex vivo study in human corneas[J]. Journal of Refractive Surgery, 34, 245-252(2018).
[71] Liu R, Zhao J, Xu Y et al. Femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study[J]. Investigative Ophthalmology & Visual Science, 56, 3715-3720(2015).
[72] Pradhan K R, Reinstein D Z, Carp G I et al. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor[J]. Journal of Refractive Surgery, 29, 777-782(2013).
[73] Mastropasqua L, Nubile M, Salgari N et al. Femtosecond laser-assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: a preliminary study[J]. Journal of Refractive Surgery, 34, 36-44(2018).
[74] Nubile M, Salgari N, Mehta J S et al. Epithelial and stromal remodelling following femtosecond laser-assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus[J]. Scientific Reports, 11, 2293(2021).
[75] Xu H M, Liu H, Yu J et al. Pulsed and continuous accelerated scleral cross-linking using riboflavin and ultraviolet A irradiation for the prevention of myopia progression in a Guinea pig model[J]. Chinese Journal of Experimental Ophthalmology, 36, 767-772(2018).
[76] Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus[J]. American Journal of Ophthalmology, 135, 620-627(2003).
[77] Li J J, Ji P, Lin X T. Efficacy of corneal collagen cross-linking for treatment of keratoconus: a meta-analysis of randomized controlled trials[J]. PLoS One, 10, e0127079(2015).
[78] Wollensak G. Crosslinking treatment of progressive keratoconus: new hope[J]. Current Opinion in Ophthalmology, 17, 356-360(2006).
[79] Razmjoo H, Peyman A, Rahimi A et al. Cornea collagen cross-linking for keratoconus: a comparison between accelerated and conventional methods[J]. Advanced Biomedical Research, 6, 10(2017).
[80] Zhang J, Zheng Y, Liu Q et al. Therapeutic effect and safety of accelarated transepithelial riboflavin-ultraviolet corneal collagen crosslinking for keratoconus[J]. Chinese Journal of Experimental Ophthalmology, 34, 160-165(2016).
[81] Shajari M, Kolb C M, Agha B et al. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis[J]. Acta Ophthalmologica, 97, e22-e35(2019).
[82] Kirgiz A, Eliacik M, Yildirim Y. Different accelerated corneal collagen cross-linking treatment modalities in progressive keratoconus[J]. Eye and Vision, 3, 16(2019).
[83] Dong Z X, Zhou X T. Collagen cross-linking with riboflavin in a femtosecond laser-created pocket in rabbit corneas: 6-month results[J]. American Journal of Ophthalmology, 152, 22-27(2011).
[84] Kanellopoulos A J. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results[J]. Journal of Refractive Surgery, 25, 1034-1037(2009).
[85] Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus: initial clinical result in 6 eyes[J]. Cornea, 34, 1331-1339(2015).
[86] Mukhtar S, Ambati B K. Pediatric keratoconus: a review of the literature[J]. International Ophthalmology, 38, 2257-2266(2018).
[87] Saleem M I H, Elzembely H A I, AboZaid M A et al. Three-year outcomes of cross-linking PLUS (combined cross-linking with femtosecond laser intracorneal ring segments implantation) for management of keratoconus[J]. Journal of Ophthalmology, 2018, 6907573(2018).
[88] Jacob S, Patel S R, Agarwal A et al. Corneal allogenic intrastromal ring segments (CAIRS) combined with corneal cross-linking for keratoconus[J]. Journal of Refractive Surgery, 34, 296-303(2018).
[89] da Candelaria Renesto A, Melo L A S, de Filippi Sartori M et al. Sequential topical riboflavin with or without ultraviolet a radiation with delayed intracorneal ring segment insertion for keratoconus[J]. American Journal of Ophthalmology, 153, 982-993(2012).
[90] Legare M E, Iovieno A, Yeung S N et al. Intacs with or without same-day corneal collagen cross-linking to treat corneal ectasia[J]. Canadian Journal of Ophthalmology, 48, 173-178(2013).
[91] Iqbal M, Elmassry A, Tawfik A et al. Analysis of the outcomes of combined cross-linking with intracorneal ring segment implantation for the treatment of pediatric keratoconus[J]. Current Eye Research, 44, 125-134(2019).
[92] Ozek D, Karaca E E, Kemer O E. Accelerated corneal cross-linking with hypo-osmolar riboflavin in thin keratoconic corneas: 2-year follow-up[J]. Arquivos Brasileiros De Oftalmologia, 83, 277-282(2020).
[93] Koç M, Uzel M M, Koban Y et al. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin corneas: short-term results[J]. Cornea, 35, 350-354(2016).
[94] Srivatsa S, Jacob S, Agarwal A. Contact lens assisted corneal cross linking in thin ectatic corneas-a review[J]. Indian Journal of Ophthalmology, 68, 2773-2778(2020).
[95] Mazzotta C, Jacob S, Agarwal A et al. In vivo confocal microscopy after contact lens-assisted corneal collagen cross-linking for thin keratoconic corneas[J]. Journal of Refractive Surgery, 32, 326-331(2016).
[96] Padmanabhan P, Dave A. Collagen cross-linking in thin corneas[J]. Indian Journal of Ophthalmology, 61, 422-424(2013).
[97] Cagini C, Riccitelli F, Messina M et al. Epi-off-lenticule-on corneal collagen cross-linking in thin keratoconic corneas[J]. International Ophthalmology, 40, 3403-3412(2020).
[98] Sachdev M S, Gupta D, Sachdev G et al. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea[J]. Journal of Cataract & Refractive Surgery, 41, 918-923(2015).
Get Citation
Copy Citation Text
Shengsheng Wei, Yong Li, Jing Li, Zhenxi Zhang. Recent Progress in Femtosecond Laser in Treatment of Ophthalmic Keratoconus[J]. Chinese Journal of Lasers, 2022, 49(15): 1507103
Category: Optical Diagnostics and Therapy
Received: Nov. 19, 2021
Accepted: Jan. 27, 2022
Published Online: Aug. 9, 2022
The Author Email: Yong Li (344813995@qq.com), Jing Li (lijing850205@163.com), Zhenxi Zhang (zxzhang@mail.xjtu.edu.cn)