Infrared Technology, Volume. 46, Issue 7, 765(2024)
Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multihead Attention
[1] [1] WANG T Y, LUO X Q, ZHANG Z C. Self-attention guided fusion algorithm for infrared and visible images[J]. Infrared Technology, 2023, 45(2): 171-177.
[2] [2] KUMAR B K S. Multifocus multispectral image fusion based on pixel significance using disrcret cosin harmonic wavelet transform[J]. Signal Image&.Video Processing, 2013, 7(6): 1125-1143.
[3] [3] KUMAR B K S. Image fusion based on pixel significance using crossbilateralfilter[J]. Signal Image & Video Processing, 2015, 9(5): 1193-1204.
[4] [4] LI H, QIU H, YU Z, et al. Infrared and visible image fusion scheme based on NSCT and low-level visual features[J]. Infrared Physics & Technology, 2016, 76: 174-184.
[5] [5] HOU J L, ZHANG D Z, WEI W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
[6] [6] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural net-works[J]. Science, 2006, 313(5786): 504-507.
[7] [7] LI H, WU X J. DenseFuse: A fusiona pproach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
[8] [8] HUANG G, LIU Z, LAURENSVD M, et al. Densely connected convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
[9] [9] LI H, WU X J, Kittler J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86.
[10] [10] Vibashan V S, Valanarasu J, Oza P, et al, et al. Image fusion transformer [J/OL]. arXiv preprint arXiv: 2107.09011. 2021. https://ieeexplore. ieee.org/document/9897280.
[11] [11] LI H, WU X J, Durrani T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656.
[12] [12] HUANG L L, LI Q, LU J Z, et al. Infrared and visible image fusion based on multi-scale and attention modeling[J]. Infrared Technology, 2023, 45(2): 143-149.
[13] [13] Zamir S W, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5718-5729.
[14] [14] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.
[15] [15] LIN T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[C]//Computer Vision-ECCV, 2014: 740-755.
[16] [16] WANG S H, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1037-1045.
[17] [17] TOET A. The TNO multi band image data collection[J]. Data in Brief, 2017, 15: 249-251.
[18] [18] LIU J, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5792-5801.
[19] [19] XU H, MA J Y, JIANG J J ,et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44(1): 502-518.
[20] [20] WANG C Y , Bochkovskiy A , LIAO H Y M. YOLOv7: Trainable bagof-freebies sets new state-of-the-art for real-time object detectors[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475, DOI: 10.1109/CVPR52729.2023.00721.
Get Citation
Copy Citation Text
LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multihead Attention[J]. Infrared Technology, 2024, 46(7): 765