Infrared Technology, Volume. 46, Issue 7, 765(2024)

Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multihead Attention

Qiuheng LI1,2, Hao DENG1,2, Guihua LIU1,2、*, Zhongxiang PANG3, Xue TANG1,2, Junqin ZHAO4, and Mengyuan LU1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(20)

    [1] [1] WANG T Y, LUO X Q, ZHANG Z C. Self-attention guided fusion algorithm for infrared and visible images[J]. Infrared Technology, 2023, 45(2): 171-177.

    [2] [2] KUMAR B K S. Multifocus multispectral image fusion based on pixel significance using disrcret cosin harmonic wavelet transform[J]. Signal Image&.Video Processing, 2013, 7(6): 1125-1143.

    [3] [3] KUMAR B K S. Image fusion based on pixel significance using crossbilateralfilter[J]. Signal Image & Video Processing, 2015, 9(5): 1193-1204.

    [4] [4] LI H, QIU H, YU Z, et al. Infrared and visible image fusion scheme based on NSCT and low-level visual features[J]. Infrared Physics & Technology, 2016, 76: 174-184.

    [5] [5] HOU J L, ZHANG D Z, WEI W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.

    [6] [6] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural net-works[J]. Science, 2006, 313(5786): 504-507.

    [7] [7] LI H, WU X J. DenseFuse: A fusiona pproach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.

    [8] [8] HUANG G, LIU Z, LAURENSVD M, et al. Densely connected convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.

    [9] [9] LI H, WU X J, Kittler J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86.

    [10] [10] Vibashan V S, Valanarasu J, Oza P, et al, et al. Image fusion transformer [J/OL]. arXiv preprint arXiv: 2107.09011. 2021. https://ieeexplore. ieee.org/document/9897280.

    [11] [11] LI H, WU X J, Durrani T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656.

    [12] [12] HUANG L L, LI Q, LU J Z, et al. Infrared and visible image fusion based on multi-scale and attention modeling[J]. Infrared Technology, 2023, 45(2): 143-149.

    [13] [13] Zamir S W, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5718-5729.

    [14] [14] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.

    [15] [15] LIN T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[C]//Computer Vision-ECCV, 2014: 740-755.

    [16] [16] WANG S H, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1037-1045.

    [17] [17] TOET A. The TNO multi band image data collection[J]. Data in Brief, 2017, 15: 249-251.

    [18] [18] LIU J, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5792-5801.

    [19] [19] XU H, MA J Y, JIANG J J ,et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2022, 44(1): 502-518.

    [20] [20] WANG C Y , Bochkovskiy A , LIAO H Y M. YOLOv7: Trainable bagof-freebies sets new state-of-the-art for real-time object detectors[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475, DOI: 10.1109/CVPR52729.2023.00721.

    Tools

    Get Citation

    Copy Citation Text

    LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multihead Attention[J]. Infrared Technology, 2024, 46(7): 765

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2023

    Accepted: --

    Published Online: Sep. 2, 2024

    The Author Email: Guihua LIU (liughua_Swit@163.com)

    DOI:

    Topics