Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1610007(2022)

Lightweight Super-Resolution Image-Reconstruction Model with Adaptive Residual Attention

Ming Jiang, Qingsheng Xiao, Jianbing Yi*, and Feng Cao
Author Affiliations
  • School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi , China
  • show less
    Figures & Tables(12)
    Adaptive residual attention super-resolution network structure
    Coordinate attention
    Heat maps of attention map under different network layers
    Adaptive residual attention information extraction module
    Effect of number of ARB modules on model performance
    Correspondence between number of model parameters and PSNR values for each algorithm
    Results of different algorithms for the “253027.png” in BSD100 dataset under 4× magnification
    Results of different algorithms for the “img_046” in Urban100 dataset under 4× magnification
    Results of different algorithms for the “img_012” in Urban100 dataset under 4× magnification
    • Table 1. Parameter setting of the proposed network structure

      View table

      Table 1. Parameter setting of the proposed network structure

      Layer_nameKernel_sizeInput_channelOutput_channel
      Conv1(3,3)364
      [ARB]×20(RB)(1,1)332
      (3,3)3232
      (3,3)3232
      [ARB]×20(CoordA)(1,1)6432
      (1,1)3216
      (1,1)1632
      (1,1)1632
      (1,1)6464
      Upconv1(3,3)64256
      Upconv2(3,3)64256
      Conv_out(3,3)643
    • Table 2. Number of parameters of different module combinations and PSNR values under Set5 dataset at a magnification of 4

      View table

      Table 2. Number of parameters of different module combinations and PSNR values under Set5 dataset at a magnification of 4

      ModuleNumber of parameters /103PSNR /dB
      Baseline151725.98
      Baseline+CA152626.02
      Baseline+CoordA154426.03
      ARASR(ours)92226.09
    • Table 3. Average PSNR and SSIM of different SR algorithms under 2×, 3×, and 4× magnification on the four datasets

      View table

      Table 3. Average PSNR and SSIM of different SR algorithms under 2×, 3×, and 4× magnification on the four datasets

      MethodScaleNumber of parameters /103

      Set5

      PSNR /dB SSIM

      Set14

      PSNR /dB SSIM

      BSD100

      PSNR /dB SSIM

      Urban100

      PSNR /dB SSIM

      Bicubic33.66 0.929930.24 0.868829.56 0.843126.88 0.8403
      SRCNN5736.66 0.954232.45 0.906731.36 0.887929.50 0.8946
      FSRCNN1337.00 0.955832.63 0.908831.53 0.892029.88 0.9020
      VDSR66637.53 0.958733.03 0.912431.90 0.894230.75 0.9133
      DRCN177437.63 0.958833.04 0.911831.85 0.894230.75 0.9133
      LapSRN25137.52 0.959132.99 0.912431.80 0.895230.41 0.9103
      DRRN29837.74 0.959133.23 0.913632.05 0.897331.23 0.9188
      MemNet67837.78 0.959733.28 0.914232.08 0.897831.31 0.9195
      EDSR-baseline137037.99 0.960433.57 0.917532.16 0.899431.98 0.9272
      SRMDNF151137.79 0.960133.32 0.915932.05 0.898531.33 0.8204
      CARN159237.76 0.959033.52 0.916632.09 0.897831.92 0.9256
      ARASR-s30737.88 0.960233.49 0.917132.12 0.899131.92 0.9266
      ARASR77438.02 0.960633.71 0.918932.19 0.900032.24 0.9297
      Bicubic

      30.39 0.868227.55 0.774227.21 0.738524.46 0.7349
      SRCNN5732.75 0.909029.30 0.821528.41 0.786326.24 0.7989
      FSRCNN1333.18 0.914029.37 0.824028.53 0.791026.43 0.8080
      VDSR66633.66 0.921329.77 0.831428.82 0.797627.14 0.8279
      DRCN177433.82 0.922629.76 0.831128.80 0.796327.15 0.8276
      LapSRN50233.81 0.922029.79 0.832528.82 0.798027.07 0.8275
      DRRN29834.03 0.924429.96 0.834928.96 0.800427.53 0.8378
      MemNet67834.09 0.924830.00 0.835028.96 0.800127.56 0.8376
      EDSR-baseline155534.37 0.927030.28 0.841729.09 0.805228.15 0.8527
      SRMDNF152834.12 0.925430.04 0.838228.97 0.802527.57 0.8398
      CARN159234.29 0.925530.29 0.840729.06 0.803428.06 0.8493
      ARASR-s37934.24 0.926230.27 0841129.03 0.803827.98 0.8488
      ARASR95934.37 0.927030.39 0.843329.11 0.805628.29 0.8552
      Bicubic28.42 0.810426.00 0.702725.96 0.667523.14 0.6577
      SRCNN5730.48 0.862827.50 0.751326.90 0.710124.52 0.7221
      FSRCNN1330.72 0.866027.61 0.755026.98 0.715024.62 0.7280
      VDSR66531.35 0.883828.01 0.767427.29 0.725125.18 0.7524
      DRCN177431.53 0.885428.02 0.767027.23 0.723325.14 0.7510
      LapSRN81331.54 0.885228.09 0.770027.32 0.727525.21 0.7562
      DRRN29731.68 0.888828.21 0.772027.38 0.728425.44 0.7638
      MemNet67831.74 0.889328.26 0.772327.40 0.728125.50 0.7630
      EDSR-baseline151832.09 0.893828.58 0.781327.57 0.735726.04 0.7849
      SRMDNF155231.96 0.892528.35 0.778727.49 0.733725.68 0.7731
      CARN159232.13 0.893728.60 0.780627.58 0.734926.07 0.7837
      ARASR-s36532.06 0.893228.50 0.779027.51 0.734225.93 0.7807
      ARASR92232.20 0.895128.61 0.782127.58 0.736726.15 0.7876
    Tools

    Get Citation

    Copy Citation Text

    Ming Jiang, Qingsheng Xiao, Jianbing Yi, Feng Cao. Lightweight Super-Resolution Image-Reconstruction Model with Adaptive Residual Attention[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1610007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 1, 2021

    Accepted: Jun. 27, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Jianbing Yi (yijianbing8@163.com)

    DOI:10.3788/LOP202259.1610007

    Topics