Chinese Journal of Lasers, Volume. 51, Issue 5, 0501004(2024)
Idler-Resonant Optical Vortex Parametric Oscillator Based on KTiOAsO4
[1] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).
[3] Gahagan K T, Swartzlander G A. Optical vortex trapping of particles[J]. Optics Letters, 21, 827-829(1996).
[4] Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nature Photonics, 5, 335-342(2011).
[5] Toyoda K, Miyamoto K, Aoki N et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano Letters, 12, 3645-3649(2012).
[6] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).
[7] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14-B28(2016).
[8] Sephton B, Huang Y W, Ambrosio A et al. Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces[J]. Journal of Nanophotonics, 14, 016005(2020).
[9] Barada D, Juman G, Yoshida I et al. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination[J]. Applied Physics Letters, 108, 051108(2016).
[10] Oemrawsingh S S R, van Houwelingen J A W, Eliel E R et al. Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 43, 688-694(2004).
[11] Jaiswal V K, Singh R P, Simon R. Producing optical vortices through forked holographic grating: study of polarization[J]. Journal of Modern Optics, 57, 2031-2038(2010).
[12] Karimi E, Piccirillo B, Nagali E et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates[J]. Applied Physics Letters, 94, 231124(2009).
[13] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).
[15] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 27, 2072-2077(2010).
[16] Omatsu T, Miyamoto K, Lee A J. Wavelength-versatile optical vortex lasers[J]. Journal of Optics, 19, 123002(2017).
[17] Dholakia K, Simpson N B, Padgett M J et al. Second-harmonic generation and the orbital angular momentum of light[J]. Physical Review A, 54, R3742-R3745(1996).
[18] Li Y, Zhou Z Y, Ding D S et al. Sum frequency generation with two orbital angular momentum carrying laser beams[J]. Journal of the Optical Society of America B, 32, 407-411(2015).
[19] Martinelli M, Huguenin J A O, Nussenzveig P et al. Orbital angular momentum exchange in an optical parametric oscillator[J]. Physical Review A, 70, 013812(2004).
[20] Miyamoto K, Miyagi S, Yamada M et al. Optical vortex pumped mid-infrared optical parametric oscillator[J]. Optics Express, 19, 12220-12226(2011).
[21] Yusufu T, Tokizane Y, Yamada M et al. Tunable 2-μm optical vortex parametric oscillator[J]. Optics Express, 20, 23666-23675(2012).
[22] Baumgartner R, Byer R. Optical parametric amplification[J]. IEEE Journal of Quantum Electronics, 15, 432-444(1979).
[23] Wang H, Zhao L L, Tian J T et al. Research progress of long-wave solid-state lasers based on optical parametric oscillation and amplification technology[J]. Laser & Optoelectronics Progress, 60, 2300007(2023).
[24] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser[J]. Optics Express, 21, 12401-12409(2013).
[25] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).
[26] Cai G Z, Bu L B, Gong Y et al. Absorption spectrum characteristics of NO2 near 3.4 μm and its application in differential absorption lidar[J]. Acta Photonica Sinica, 48, 0701001(2019).
[27] Yusufu T, Niu S J, Tuersun P et al. Tunable 3 µm optical vortex parametric oscillator[J]. Japanese Journal of Applied Physics, 57, 122701(2018).
[28] Niu S J, Wang S T, Ababaike M et al. Tunable near- and mid-infrared (1.36‒1.63 µm and 3.07‒4.81 µm) optical vortex laser source[J]. Laser Physics Letters, 17, 045402(2020).
[29] Ababaike M, Wang S T, Aierken P et al. Near and mid-infrared optical vortex parametric oscillator based on KTA[J]. Scientific Reports, 11, 8013(2021).
[30] Meng J, Cong Z H, Zhao Z G et al. 100 Hz high-energy KTA dual-wavelength optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 1201009(2021).
[31] Sharma V, Kumar S C, Samanta G K et al. Tunable, high-power, high-order optical vortex beam generation in the mid-infrared[J]. Optics Express, 30, 1195-1204(2022).
[32] Camper A, Park H, Lai Y H et al. Tunable mid-infrared source of light carrying orbital angular momentum in the femtosecond regime[J]. Optics Letters, 42, 3769-3772(2017).
[33] Tong H, Xie G Q, Qiao Z et al. Generation of a mid-infrared femtosecond vortex beam from an optical parametric oscillator[J]. Optics Letters, 45, 989-992(2020).
[34] Heng J X, Feng X, Liu P et al. Research progress of intracavity spectrum broadening technology of femtosecond optical parametric oscillator[J]. Chinese Journal of Lasers, 49, 1201004(2022).
[35] Aadhi A, Sharma V, Singh R P et al. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source[J]. Optics Letters, 42, 3674-3677(2017).
[36] Wang H L, Yang H Q, Su J et al. Experimental study of near-infrared to mid-infrared laser output based on single resonant optical parametric oscillator[J]. Chinese Journal of Lasers, 49, 1801005(2022).
[37] Zhou Y X, Yusufu T, Ma Y Y et al. Generation of tunable, non-integer OAM states from an optical parametric oscillator[J]. Applied Physics Letters, 122, 121106(2023).
[38] Tiihonen M, Pasiskevicius V, Laurell F. Spectral and spatial limiting in an idler-resonant PPKTP optical parametric oscillator[J]. Optics Communications, 250, 207-211(2005).
[39] Bai F, Wang Q P, Liu Z J et al. Idler-resonant optical parametric oscillator based on KTiOAsO4[J]. Applied Physics B, 112, 83-87(2013).
[40] Bai F, Wang Q P, Liu Z J et al. Comparison of signal-resonant and idler-resonant KTA-SROs[J]. Chinese Optics Letters, 14, 071402(2016).
[41] Parsa S, Kumar S C, Nandy B et al. Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator[J]. Optics Express, 27, 25436-25444(2019).
[42] Nandy B, Kumar S C, Ebrahim-Zadeh M. Yb-fiber-pumped high-average-power picosecond optical parametric oscillator tunable across 1.3‒1.5 μm[J]. Optics Express, 30, 16340-16350(2022).
[43] Bian J T, Kong H, Xu H P et al. Temperature tuning properties of 3.5-μm KTiOAsO4 optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 0401015(2021).
[44] Ramee S, Simon R. Effect of holes and vortices on beam quality[J]. Journal of the Optical Society of America A, 17, 84-94(2000).
Get Citation
Copy Citation Text
Subinuer Yakufu, Yuxia Zhou, Chuang Xuan, Jianqiang Ye, Mailikeguli Aihemaiti, Xiazhuo Jiao, Taximaiti Yusufu. Idler-Resonant Optical Vortex Parametric Oscillator Based on KTiOAsO4[J]. Chinese Journal of Lasers, 2024, 51(5): 0501004
Category: laser devices and laser physics
Received: Jul. 11, 2023
Accepted: Sep. 5, 2023
Published Online: Mar. 18, 2024
The Author Email: Zhou Yuxia (zhou_yx0801@sina.com), Yusufu Taximaiti (taxmamat_84@sina.com)
CSTR:32183.14.CJL231009