APPLIED LASER, Volume. 45, Issue 2, 208(2025)
Research Progress of Mode-Locked Fiber Lasers Based on Optimization Algorithm
[1] [1] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[2] [2] JGERSKPPER J. Algorithmic analysis of a basic evolutionary algorithm for continuous optimization[J]. Theoretical Computer Science, 2007, 379(3): 329-347.
[3] [3] AERY M,RAM C.A Review on machine learning:Trends and future prospects[J].Research Cell:An International Journal of Engineering Sciences,2017(ETME-17),25:89-96.
[4] [4] SUNG W T, CHIANG Y C. Improved particle swarm optimization algorithm for android medical care IOT using modified parameters[J]. Journal of Medical Systems, 2012, 36(6): 3755-3763.
[5] [5] CHANG P C, LIN J J, LIU C H. An attribute weight assignment and particle swarm optimization algorithm for medical database classifications[J]. Computer Methods and Programs in Biomedicine, 2012, 107(3): 382-392.
[6] [6] ELKADY S K, ABDELSALAM H M. A modified particle swarm optimization algorithm for solving capacitated maximal covering location problem in healthcare systems[M].Intelligent systems reference library. Cham: Springer International Publishing, 2015: 117-133.
[7] [7] SUN Q, WU Q Y. Feature space fusion classification of remote sensing image based on ant colony optimisation algorithm[J]. International Journal of Information and Communication Technology, 2022, 20(2): 164.
[8] [8] LI W, WOZNIAK M. A hole filling and optimization algorithm of remote sensing image based on bilateral filtering[J]. Mobile Networks and Applications, 2022, 27(2): 743-751.
[9] [9] SHAO R, ZHANG G, GONG X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 2022, 10(8): 1868.
[10] [10] HAN H Y,LI X L,ZHANG S,et al. Precise wavelength control of Yb-doped fiber laser using fused tapered fiber technology[J]. Journal of Lightwave Technology,2019,37(3):715-721.
[11] [11] YANG S, YANG Y Y, ZHANG L, et al. 25 nJ, 634 ps and 1 MHz all-fiber passively mode-locked fiber laser based on a GaAs saturable absorber[J]. Optik, 2019, 178: 1218-1222.
[13] [13] ZHAO C J, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.
[14] [14] YANG S, QI Y Y. Sub-nanosecond multiple-wavelength harmonic mode-locked Tm-Ho Co-doped fiber laser[J]. Optics & Laser Technology, 2020, 127: 106160.
[15] [15] OBER M H, HOFER M, FERMANN M E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror[J]. Optics Letters, 1993, 18(5): 367.
[16] [16] NGUYEN D T, MURAMATSU A, MORIMOTO A. Femtosecond pulse generation by actively modelocked fibre ring laser[J]. Electronics Letters, 2013, 49(8): 556-557.
[17] [17] JEON C G, ZHANG S Y, SHIN J, et al. Highly tunable repetition-rate multiplication of mode-locked lasers using all-fibre harmonic injection locking[J]. Scientific Reports, 2018, 8: 13875.
[18] [18] LIU G Y, WANG A M, ZHANG Z G. 84-fs 500-MHz Yb: Fiber-based laser oscillator mode locked by biased NALM[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2055-2058.
[19] [19] ZHANG J, KONG Z Y, LIU Y Z, et al. Compact 517 MHz soliton mode-locked Er-doped fiber ring laser[J]. Photonics Research, 2016, 4(1): 27.
[20] [20] LIU G Y, JIANG X H, WANG A M, et al. Robust 700 MHz mode-locked Yb: Fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 2018, 26(20): 26003-26008.
[21] [21] SHI J K, LI Y, GAO S Y, et al. All-polarization-maintaining figure-eight Er-fiber ultrafast laser with a bidirectional output coupler in the loss-imbalanced nonlinear optical loop mirror[J]. Chinese Optics Letters, 2018, 16(12): 121404.
[22] [22] BOWEN P, ERKINTALO M, BRODERICK N G R. Large net-normal dispersion Er-doped fibre laser mode-locked with a nonlinear amplifying loop mirror[J]. Optics Communications, 2018, 410: 447-451.
[24] [24] CUI C H, ZHANG L, FAN L R.In situcontrol of effective Kerr nonlinearity with Pockels integrated photonics[J]. Nature Physics, 2022, 18: 497-501.
[25] [25] LIANG Y S, ZHU Z M, QIAO S Q, et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity[J]. Nature Nanotechnology, 2022, 17(5): 524-530.
[26] [26] TANG Y X, ZHANG Y B, LIU Q R, et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor[J]. Light, Science & Applications, 2022, 11(1): 94.
[28] [28] HELLWIG T, WALBAUM T, GRO P, et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Applied Physics B, 2010, 101(3): 565-570.
[29] [29] SHEN X L, LI W X, YAN M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(16): 3426-3428.
[30] [30] LI S, XU J, CHEN G L, et al. An automatic mode-locked system for passively mode-locked fiber laser[C]//SPIE Proceedings", "2013 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing. Beijing, China: SPIE, 2013: 282-288.
[31] [31] OLIVIER M, GAGNON M D, PICH M. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state[J]. Optics Express, 2015, 23(5): 6738-6746.
[32] [32] VIKHAR P A. Evolutionary algorithms: A critical review and its future prospects[C]//2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). Jalgaon, India: IEEE, 2016: 261-265.
[33] [33] FU X, KUTZ J N. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm[J]. Optics Express, 2013, 21(5): 6526.
[34] [34] WOODWARD R I, KELLEHER E J R. Towards ‘smart lasers’: Self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 2016, 6: 37616.
[35] [35] WOODWARD R I, KELLEHER E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Optics Letters, 2017, 42(15): 2952-2955.
[36] [36] WINTERS D G, KIRCHNER M S, BACKUS S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Optics Express, 2017, 25(26): 33216.
[37] [37] JIANG M, WU H S, AN Y, et al. Fiber laser development enabled by machine learning: Review and prospect[J]. Photoni X, 2022, 3(1): 16.
[40] [40] BRUNTON S L, FU X, KUTZ J N. Extremum-seeking control of a mode-locked laser[J]. IEEE Journal of Quantum Electronics, 2013, 49(10): 852-861.
[41] [41] BRUNTON S L, FU X, KUTZ J N. Self-tuning fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 464-471.
[42] [42] BAUMEISTER T, BRUNTON S L, NATHAN KUTZ J. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 2018, 35(3): 617.
[43] [43] PU G Q, YI L L, ZHANG L, et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 2019, 6(3): 362.
[44] [44] PU G Q, YI L L, ZHANG L, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2020, 32(1): 7-10.
[45] [45] YAN Q Q, DENG Q H, ZHANG J, et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 2021, 9(8): 1493.
[46] [46] LI Z, YANG S S, XIAO Q, et al. Deep reinforcement with spectrum series learning control for a mode-locked fiber laser[J]. Photonics Research, 2022, 10(6): 1491.
[47] [47] GIRARDOT J, COILLET A, NAFA M, et al. On-demand generation of soliton molecules through evolutionary algorithm optimization[J]. Optics Letters, 2022, 47(1): 134-137.
[48] [48] XIAN A H, CAO X, LIU Y Y, et al. Adaptive genetic algorithm-based 2 m intelligent mode-locked fiber laser[J]. OSA Continuum, 2021, 4(11): 2747.
[49] [49] CHEN B B, ZHAO M H, LIU X Y, et al. Investigation of dissipative solitons in an Er-doped fiber laser through machine-learning online optimization based on the Gaussian process[J]. JOSA B, 2022, 39(10): 2786-2793.
[50] [50] PU G Q, YI L L, ZHANG L, et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light, Science & Applications, 2020, 9: 13.
[51] [51] ZHENG P Z, LI T J, XIA H D, et al. Autosetting soliton pulsation in a fiber laser by an improved depth-first search algorithm[J]. Optics Express, 2021, 29(21): 34684-34694.
[52] [52] WU X Q, PENG J S, BOSCOLO S, et al. Intelligent breathing soliton generation in ultrafast fiber lasers [J]. Laser & Photonics Reviews, 2022, 16(2): 2270009.
[53] [53] SALMELA L, TSIPINAKIS N, FOI A, et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 2021, 3: 344-354.
[54] [54] MA X X, LIN J Q, DAI C S, et al. Machine learning method for calculating mode-locking performance of linear cavity fiber lasers[J]. Optics & Laser Technology, 2022, 149: 107883.
[55] [55] MA X X, LV J L, LUO J, et al. Pulse convergence analysis and pulse information calculation of NOLM fiber mode-locked lasers based on machine learning method[J]. Optics Laser Technology, 2023, 163: 109390.
Get Citation
Copy Citation Text
Huang Zhiting, Han Xiaoxiang, Wang Feiran, Zhang Yunjie, Yan Xiang′an, Wang Jun, Zhang Haiyang. Research Progress of Mode-Locked Fiber Lasers Based on Optimization Algorithm[J]. APPLIED LASER, 2025, 45(2): 208
Category:
Received: Jul. 5, 2023
Accepted: Jun. 17, 2025
Published Online: Jun. 17, 2025
The Author Email: Han Xiaoxiang (hanxiaoxiang@xpu.edu.cn)