Opto-Electronic Engineering, Volume. 44, Issue 1, 49(2017)
Research advances in thermal metamaterials
[1] [1] Yu Xianglong, Zhou Ji. Research advance in smart meta-materials[J]. Journal of Materials Engineering, 2016, 44(7): 119-128.
[2] [2] Xu Xiangfan, Zhou Jun, Yang Nuo, et al. Artificial microstructure materials and heat flux manipulation[J]. Scientia Sinica Technologica, 2015, 45(7): 705-713.
[3] [3] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5: 523-530.
[4] [4] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.
[5] [5] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.
[6] [6] Wegener M. Metamaterials beyond optics[J]. Science, 2013, 342(6161): 939-940.
[7] [7] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.
[8] [8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.
[9] [9] Parazzoli C G, Greegor R B, Li K, et al. Experimental verification and simulation of negative index of refraction using Snell’s law[J]. Physical Review Letters, 2003, 90(10): 107401.
[10] [10] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369.
[11] [11] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339.
[12] [12] Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21.
[13] [13] Chen Xianzhong, Luo Yu, Zhang Jingjing, et al. Macroscopic invisibility cloaking of visible light[J]. Nature Communications, 2011, 2: 176.
[14] [14] Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light[J]. Nano Letters, 2011, 11(7): 2825-2828.
[15] [15] Kocaman S, Aras M S, Hsieh P, et al. Zero phase delay in negative-refractive-index photonic crystal superlattices[J]. Nature Photonics, 2011, 5(8): 499-505.
[16] [16] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.
[17] [17] Shen Sheng, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4): 251-255.
[18] [18] Fan C Z, Gao Y, Huang J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25): 251907.
[19] [19] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7): 8207-8218.
[20] [20] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat[J]. Physical Review Letters, 2013, 110(19): 195901.
[21] [21] Ma Y, Lan L, Jiang W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 2013, 5: e73.
[22] [22] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.
[23] [23] Dede E M, Nomura T, Schmalenberg P, et al. Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects[J]. Applied Physics Letters, 2013, 103(6): 063501.
[24] [24] Han Tiancheng, Bai Xue, Liu Dan, et al. Manipulating steady heat conduction by sensu-shaped thermal metamaterials[J]. Scientific Reports, 2015, 5: 10242.
[25] [25] Shen X, Li Y, Jiang C, et al. Thermal cloak-concentrator[J]. Applied Physics Letters, 2016, 109(3): 031907.
[26] [26] Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals[J]. Physical Review Letters, 2013, 110(2): 025902.
[27] [27] Anufriev R, Nomura M. Thermal conductance boost in phononic crystal nanostructures[J]. Physical Review B, 2015, 91(24): 245417.
[28] [28] Han Tiancheng, Qiu Chengwei. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields[J]. Journal of Optics, 2016, 18(4): 044003.
[29] [29] Xu Hongyi, Shi Xihang, Gao Fei, et al. Ultrathin three-dimensional thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054301.
[30] [30] Li Tinghua, Zhu Donglai, Mao Fuchun, et al. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Frontiers of Physics, 2016, 11: 110503.
[31] [31] Yuan Xuebo, Lin Guochang, Wang Youshan. Design of layered structure for thermal cloak with complex shape[J]. Modern Physics Letters B, 2016, 30(20): 1650256.
[32] [32] Guenneau S, Petiteau D, Zerrad M, et al. Transformed fourier and fick equations for the control of heat and mass diffusion[J]. AIP Advances, 2015, 5(5): 053404.
[33] [33] Farhat M, Chen P Y, Bagci H, et al. Thermal invisibility based on scattering cancellation and mantle cloaking[J]. Scientific Reports, 2015, 5: 9876.
[34] [34] Han Tiancheng, Bai Xue, Thong J T L, et al. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11): 1731-1734.
[35] [35] Nguyen D M, Xu Hongyi, Zhang Youming, et al. Active thermal cloak[J]. Applied Physics Letters, 2015, 107(12): 121901.
[36] [36] García-Meca C, Barceló C. Dynamically tunable transformation thermodynamics[J]. Journal of Optics, 2016, 18(4): 044026.
[37] [37] Li J Y, Gao Y, Huang J P. A bifunctional cloak using transformation media[J]. Journal of Applied Physics, 2010, 108(7): 074504.
[38] [38] Moccia M, Castaldi G, Savo S, et al. Independent manipulation of heat and electrical current via bifunctional metamaterials[J]. Physical Review X, 2014, 4(2): 021025.
[39] [39] Ma Yungui, Liu Yichao, Raza M, et al. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501.
[40] [40] Lan Chuwen, Li Bo, Zhou Ji. Simultaneously concentrated electric and thermal fields using fan-shaped structure[J]. Optics Express, 2015, 23(19): 24475-24483.
[41] [41] Yang Tianzhi, Bai Xue, Gao Dongliang, et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields[J]. Advanced Materials, 2015, 27(47): 7752-7758.
[42] [42] Alù A. Thermal cloaks get hot[J]. Physics, 2014, 7: 12.
[43] [43] Shen Xiangying, Li Ying, Jiang Chaoran, et al. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change[J]. Physical Review Letters, 2016, 117(5): 055501.
[44] [44] Wang C, Chen W, Han C, et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition[J]. Scientific Reports, 2014, 4: 4537.
[45] [45] Zheng Xiaoming, Chen Wei, Wang Guang, et al. The Raman redshift of graphene impacted by gold nanoparticles[J]. AIP Advances, 2015, 5(5): 057133.
[46] [46] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current induced doping in graphene-based transistor with asymmetrical contact barriers[J]. Applied Physics Letters, 2014, 104(8): 083115.
[47] [47] Chen Wei, Qin Shiqiao, Zhang Xueao, et al. Current self-amplification effect of graphene-based transistor in high-field transport[J]. Carbon, 2014, 77: 1090-1094.
[48] [48] Chen W, Wang F, Qin S, et al. Observation of complete space-charge-limited transport in metal-oxide-graphene hetero-structure[J]. Applied Physics Letters, 2015, 106(2): 023122.
[49] [49] Yan Bo, Fang Jingyue, Qin Shiqiao, et al. Experimental study of plasmon in a grating coupled graphene device with a resonant cavity[J]. Applied Physics Letters, 2015, 107(19): 191905.
[50] [50] Chen Wei, Yu Yayun, Zheng Xiaoming, et al. All-carbon based graphene field effect transistor with graphitic electrodes fabricated by e-beam direct writing on PMMA[J]. Scientific Reports, 2015, 5: 12198.
[51] [51] Chang C W, Okawa D, Majumdar A, et al. Solid-state thermal rectifier[J]. Science, 2006, 314(5802): 1121-1124.
[52] [52] Sawaki D, Kobayashi W, Moritomo Y, et al. Thermal rectification in bulk materials with asymmetric shape[J]. Applied Physics Letters, 2011, 98(8): 081915.
[53] [53] Tian He, Xie Dan, Yang Yi, et al. A novel solid-state thermal rectifier based on reduced graphene oxide[J]. Scientific Reports, 2012, 2: 523.
[54] [54] Li Ying, Shen Xiangying, Wu Zuhui, et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.
[55] [55] Li Baowen, Wang Lei, Casati G. Negative differential thermal resistance and thermal transistor[J]. Applied Physics Letters, 2006, 88(14): 143501.
[56] [56] Joulain K, Drevillon J, Ezzahri Y, et al. Quantum thermal transistor[J]. Physical Review Letters, 2016, 116(20): 200601.
[57] [57] Wang Lei, Li Baowen. Thermal logic gates: computation with phonons[J]. Physical Review Letters, 2007, 99(17): 177208.
[58] [58] Wang Lei, Li Baowen. Thermal memory: a storage of phononic information[J]. Physical Review Letters, 2008, 101(26): 267203.
[59] [59] Xie Rongguo, Bui C T, Varghese B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Advanced Functional Materials, 2011, 21(9): 1602-1607.
[60] [60] Elzouka M, Ndao S. Near-field NanoThermoMechanical memory[J]. Applied Physics Letters, 2014, 105(24): 243510.
[61] [61] Ito K, Nishikawa K, Iizuka H. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide[J]. Applied Physics Letters, 2016, 108(5): 053507.
Get Citation
Copy Citation Text
Xueao Zhang, Sen Zhang. Research advances in thermal metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 49
Category:
Received: Oct. 7, 2016
Accepted: --
Published Online: Feb. 23, 2017
The Author Email: Zhang Xueao (xazhang@nudt.edu.cn)