Spectroscopy and Spectral Analysis, Volume. 33, Issue 10, 2843(2013)
Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging
[2] [2] Zhao J W, Vittayapadung S, Chen Q S, et al. Maejo International Journal of Science and Technology, 2009, 3(1): 130.
[3] [3] Huang M, Lu R. Transactions of the ASABE, 2010, 53(4): 1175.
[5] [5] Kawano S, Abe H, Iwamoto M. Journal of Near Infrared Spectroscopy, 1995, 3(4): 211.
[6] [6] Macho S, Iusa R, Callao M P, et al. Analytica Chimica Acta, 2001, 445(2): 213.
[7] [7] Sun D. Hyperspectral Imaging for Food Quality Analysis and Control. Massachusetts: Academic Press, 2010. 56.
[8] [8] Riccardo L, Amparo L, Gonzalez. Chemometrics and Intelligent Laboratory Systems, 1998, 41(2): 195.
[9] [9] Mário C U A, Teresa C B S, Roberto K H G, et al. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65.
[10] [10] Svante W, Michael S, Lennart E. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109.
[11] [11] Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
Get Citation
Copy Citation Text
HUANG Wen-qian, LI Jiang-bo, CHEN Li-ping, GUO Zhi-ming. Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2843
Received: Feb. 7, 2013
Accepted: --
Published Online: Oct. 23, 2013
The Author Email: Wen-qian HUANG (huangwenqian@iea.ac.cn)