Optical Technique, Volume. 47, Issue 4, 500(2021)
Study on low Illumination image enhancement based on quantum behaved particle swarm optimization
[8] [8] Wang C, Wang S, Ma B, et al. Transform domain based medical image Super-resolution via deep Multi-scale Network[C]∥ ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Brighton,UK:IEEE,2019:28—35.
[10] [10] Kaur H, Rani J. MRI brain image enhancement using Histogram Equalization techniques[C]∥ International Conference on Wireless Communications.Chennai,India:IEEE,2016:23—29.
[11] [11] Wang S, Luo G. Naturalness preserved image enhancement using a priori Multi-Layer lightness statistics[J]. IEEE Transactions on Image Processing,2018,27(2):1—3.
[12] [12] Tao L, Zhu C, Xiang G, et al. LLCNN: A convolutional neural network for low-light image enhancement[C]∥ Visual Communications & Image Processing. Saint Petersburg,USA:IEEE,2018:33—37.
[16] [16] Gaike V, Mhaske R, Sonawane S, et al. Clustering of breast cancer tumor using third order GLCM feature[C]∥ International Conference on Green Computing & Internet of Things.Greater Noida,India:IEEE,2016:8—13.
Get Citation
Copy Citation Text
XUE Yuanyuan, ZHANG Xingzhong, ZHAO Jianbin. Study on low Illumination image enhancement based on quantum behaved particle swarm optimization[J]. Optical Technique, 2021, 47(4): 500