Optoelectronic Technology, Volume. 42, Issue 1, 8(2022)

Biosensor with Tunable Hyperbolic Metamaterial Based on Brewster Mode

Shichao WANG1, Tun CAO1,2, Zilan WANG2, and Jingyuan JIA2
Author Affiliations
  • 1School of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning6000, CHN
  • 2School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian Liaoning116000, CHN
  • show less
    References(39)

    [1] Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: Super-resolution imaging of cells[J]. Cell, 143, 1047-1058(2010).

    [2] Zeng S W, Baillargeat D, Ho H P et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications[J]. Chemical Society Reviews, 43, 3426-3452(2014).

    [3] Zijlstra P, Paulo M R, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod[J]. Nature Nanotechnology, 7, 379-382(2012).

    [4] Ament I, Prasad J, Henkel A et al. Single unlabeled protein detection on individual plasmonic nanoparticles[J]. Nano Letters, 12, 1092-1095(2012).

    [5] Im H, Shao H, Park Y I et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 32, 490-495(2014).

    [6] Wu C H, Khanikaev A B, Adato R et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 11, 69-75(2012).

    [7] Qiu S J, Chen Y, Xu F et al. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity[J]. Optics Letters, 37, 863-865(2012).

    [8] Jia S, Wang Y, Xu D et al. Temperature sensor based on fiber ring laser with sagnac loop[J]. IEEE Photonics Technology Letters, 28, 794-797(2016).

    [9] Chen G Y, Ming D. A review of microfiber and nanofiber based optical sensors[J]. Open Optics Journal, 7, 32(2013).

    [10] Raether H[M]. Surface plasmons on smooth and rough surfaces and on gratings(1988).

    [11] Angelis F D, Gentile F, Mecarini F et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nature Photonics, 5, 682-687(2011).

    [12] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).

    [13] Acimovic S S, Ortega M A, Sanz V et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum[J]. Nano Letters, 14, 2636-2641(2014).

    [14] Kravets V G, Schedin F, Jalil R et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection[J]. Nature Materials, 12, 304-309(2013).

    [15] Brolo A G. Plasmonics for future biosensors[J]. Nature Photonics, 6, 709-713(2012).

    [16] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials[J]. Nature Photonics, 7, 948-957(2013).

    [17] Baqir M A, Choudhury P K, Farmani A et al. Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure[J]. IEEE Photonics Journal, 11, 4601510(2019).

    [18] Caligiuri V, Dhama R, Sreekanth K V et al. Dielectric singularity in hyperbolic metamaterials: The inversion point of coexisting anisotropies[J]. Scientific Reports, 6, 20002(2016).

    [19] Yu G, Jacob Z. Thermal hyperbolic metamaterials[J]. Optics Express, 21, 15014-15019(2013).

    [20] Sreekanth K V, Alapan Y, Elkabbash M et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials[J]. Nature Materials, 15, 621-627(2016).

    [21] Vasilantonakis N, Wurtz G A, Podolskiy V A et al. Refractive index sensing with hyperbolic metamaterials:Strategies for biosensing and nonlinearity enhancement[J]. Optics Express, 23, 14329-14343(2015).

    [22] Sreekanth K V, Elkabbash M, Alapan Y et al. Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity[J]. Epj. Applied Metamaterials, 4, 1(2017).

    [23] Baqir M A, Farmani A, Fatima T et al. Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range[J]. Applied Optics, 57, 9447-9454(2018).

    [24] Kabashin A V, Evans P, Pastkovsky S et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Materials, 8, 867-871(2009).

    [25] Sreekanth K V, Alapan Y, Elkabbash M et al. Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials[J]. Advanced Optical Materials, 4, 1767-1772(2016).

    [26] Goos F, Hnchen H. Ein neuer und fundamentaler versuch zur totalreflexion[J]. Annalen der Physik, 1, 333-346(1947).

    [27] Xu C R, Xu J P, Song G et al. Enhanced displacements in reflected beams at hyperbolic metamaterials[J]. Optics Express, 24, 21767-21776(2016).

    [28] Sreekanth K V, Mahalakshmi P, Han S et al. Brewster mode-enhanced sensing with hyperbolic metamaterial[J]. Advanced Optical Materials, 7, 1900680(2019).

    [29] Qiu G Y, Thakur A, Xu C et al. Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor[J]. Advanced Functional Materials, 29, 1806761(2018).

    [30] Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: Fundamentals and applications[J]. Nano Convergence, 1, 14(2014).

    [31] Schnabel V, Spolenak R, Doebeli M et al. Structural color sensors with thermal memory: Measuring functional properties of Ti-based nitrides by eye[J]. Advanced Optical Materials, 6, 1800656(2018).

    [32] Kana J B, Vignaud G, Gibaud A et al. Thermally driven sign switch of static dielectric constant of VO2 thin film[J]. Optical Materials, 54, 165-169(2016).

    [33] Ghasemi M, Choudhury P K, Baqir M A et al. Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films[J]. Journal of Nanophotonics, 11(2017).

    [34] Artmann K. Berechnungderseitenversetzung des totalreflektierten strahles[J]. Annalen der Physik, 437, 87-102(1948).

    [35] Sreekanth K V, Ouyang Q, Sreejith S et al. Phase change material based low loss visible frequency hyperbolic metamaterials for ultrasensitive label free biosensing[J]. Advanced Optical Materials, 7, 1900081(2019).

    [36] Wei C W, Cen M J, Chui H C et al. Numerical study of biosensor based on α-MoO3/Au hyperbolic metamaterial at visible frequencies[J]. Journal of Physics D Applied Physics, 54(2021).

    [37] Skinner J J, Lim W K, Bedard S et al. Protein dynamics viewed by hydrogen exchange[J]. Protein Science, 21, 996-1005(2012).

    [38] Wu Q, Li N B, Wang Y et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection[J]. Biosensors & Bioelectronics, 144, 111697(2019).

    [39] Grauslund L R, Calvaresi V, Pansegrau W et al. Epitope and paratope mapping by HDX-MS combined with SPR elucidates the difference in bactericidal activity of two anti-nad amonoclonal antibodies[J]. Journal of the American Society for Mass Spectrometry, 21, 1575-1582(2021).

    Tools

    Get Citation

    Copy Citation Text

    Shichao WANG, Tun CAO, Zilan WANG, Jingyuan JIA. Biosensor with Tunable Hyperbolic Metamaterial Based on Brewster Mode[J]. Optoelectronic Technology, 2022, 42(1): 8

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research and Trial-manufacture

    Received: Jun. 9, 2021

    Accepted: --

    Published Online: Aug. 3, 2022

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2022.01.003

    Topics