Chinese Optics Letters, Volume. 23, Issue 8, 083401(2025)
Enhanced profile reconstruction of small-angle X-ray scattering measurement via correlation learning
[7] M. Wormington, A. Ginsburg, I. Reichental et al. X-ray critical dimension metrology solution for high aspect ratio semiconductor structures. Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, 11611, 150(2021).
[13] J. Reche, Y. Blancquaert, G. Freychet et al. Dimensional control of line gratings by small angle X-ray scattering: Shape and roughness extraction. 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 1(2020).
[18] R. Ciesielski, L. M. Lohr, H. Mertens et al. Pushing the boundaries of EUV scatterometry: reconstruction of complex nanostructures for next-generation transistor technology. Metrology, Inspection, and Process Control XXXVII, 12496, 447(2023).
[22] S. Liu, T. Yang, J. Zhang et al. X-ray scatterometry using deep learning. Tenth International Symposium on Precision Mechanical Measurements, 12059, 481(2021).
[24] B. Dey, D. Cerbu, K. Khalil et al. Unsupervised machine learning based CD-SEM image segregator for OPC and process window estimation. Design-Process-Technology Co-optimization for Manufacturability XIV, 11328, 317(2020).
[26] A. Baranovskiy, I. Grinberg, M. G. Greene et al. Deep learning for the analysis of X-ray scattering data from high aspect ratio structures. Metrology, Inspection, and Process Control XXXVII, 12496, 837(2023).
[29] S. S. Ginosar. Modeling Visual Minutiae: Gestures, Styles, and Temporal Patterns(2020).
[30] J. Zhang, T. Lan, Y. Gao et al. CDSAXS study of 3d NAND channel hole etch pattern edge effects and etched hole pattern variance. Metrology, Inspection, and Process Control XXXVIII, 12955, 813(2024).
[35] C. Petti. 3d memory: etch is the new litho. Advanced Etch Technology for Nanopatterning VII, 10589, 1058904(2018).
[37] S. Siami-Namini, N. Tavakoli, A. S. Namin. The performance of LSTM and BiLSTM in forecasting time series. 2019 IEEE International Conference on Big Data (Big Data), 3285(2019).
[38] S. Santurkar, D. Tsipras, A. Ilyas et al. How does batch normalization help optimization?. Advances in Neural Information Processing Systems, 31(2018).
[39] J. L. Ba, J. R. Kiros, G. E. Hinton. Layer normalization(2016).
[40] C. Settens, B. Bunday, B. Thiel et al. Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures. Metrology, Inspection, and Process Control for Microlithography XXVII, 8681, 200(2013).
[41] K. He, X. Zhang, S. Ren et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770(2016).
[42] A. Krizhevsky, I. Sutskever, G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2012).
[43] M. Tan, Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105(2019).
[44] K. Wu, J. Zhang, H. Peng et al. Tinyvit: Fast pretraining distillation for small vision transformers. European Conference on Computer Vision, 68(2022).
[45] B. Bunday, G. Orji. Metrology. 2021 IEEE International Roadmap for Devices and Systems Outbriefs, 1(2021).
[47] C. Li, C. Chen, D. Carlson et al. Preconditioned stochastic gradient Langevin dynamics for deep neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 30(2016).
Get Citation
Copy Citation Text
Hairui Yang, Zhaolong Wu, Hong Yu, "Enhanced profile reconstruction of small-angle X-ray scattering measurement via correlation learning," Chin. Opt. Lett. 23, 083401 (2025)
Category: X-ray Optics
Received: Dec. 26, 2024
Accepted: Apr. 14, 2025
Published Online: Jul. 23, 2025
The Author Email: Hong Yu (yuhong@zjlab.ac.cn)