Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 5, 773(2025)

Improved autonomous driving object detection based on YOLOv8s

Longchun WANG1,2, Wei FANG1, Lijuan ZHANG2, and Dongming LI2、*
Author Affiliations
  • 1School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China
  • 2School of Internet of Things Engineering,Wuxi University,Wuxi 214105,China
  • show less
    Figures & Tables(19)
    Diagram of improved YOLOv8s algorithm
    RepConv model structure diagram
    EMA attention mechanism structure diagram
    Comparison charts of indicators before and after improvement experiment.(a)mAP;(b)P-R curves.
    Comparison of mAP50 for different loss functions
    Comparison images of scene detection
    Comparison of heat maps.(a)Original input image;(b)Original model heatmap;(c)Improved model heatmap.
    • Table 1. Training parameters on different versions of COCO dataset

      View table
      View in Article

      Table 1. Training parameters on different versions of COCO dataset

      ModelmAP(50-95)valSpeedCPU/msSpeedA100/msParams/MFLOPs/B
      YOLOv8n37.380.40.993.28.7
      YOLOv8s44.9128.41.2011.228.6
      YOLOv8m50.2234.71.8325.978.9
      YOLOv8l52.9375.22.3943.7165.2
      YOLOv8x53.9479.13.5368.2257.8
    • Table 2. RepConv experiment comparison

      View table
      View in Article

      Table 2. RepConv experiment comparison

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv8s0.7970.5720.7390.79311 137 329
      YOLOv8s+RepConv0.8060.5750.7370.81111 137 329
    • Table 3. Comparison of EMA adding

      View table
      View in Article

      Table 3. Comparison of EMA adding

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv8s0.7970.5720.7390.79311 137 329
      YOLOv8s+Triple0.8040.5730.7420.80411 318 081
      YOLOv8s+ECA0.8040.5740.7370.80411 137 338
      YOLOv8s+EMA0.8040.5740.7570.80411 140 625
    • Table 4. Comparison of improved Head end experiment

      View table
      View in Article

      Table 4. Comparison of improved Head end experiment

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv8s0.7970.5720.7390.79311 137 329
      YOLOv8s+P20.8080.5800.7650.80810 862 844
    • Table 5. Comparison of loss function improvement experiment

      View table
      View in Article

      Table 5. Comparison of loss function improvement experiment

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv8s0.7970.5720.7390.79311 137 329
      RepConv_EMA_P2_Focal-CIoU0.8040.5790.7440.78510 866 364
      RepConv_EMA_P2_Focal-DIoU0.8090.5800.7550.79010 866 364
      RepConv_EMA_P2_Focal-EIoU150.8060.5860.7420.80910 863 664
      RepConv_EMA_P2_Focal-GIoU160.8000.5780.7340.81010 866 364
      Rep_EMA_P2_WIoU0.8120.5840.7470.81210 866 364
    • Table 6. Experimental image configuration

      View table
      View in Article

      Table 6. Experimental image configuration

      镜像配置版本
      CUDA11.3
      Python3.8
      Pytorch1.11.0+cu113
      Torchvision0.12.0+cu113
    • Table 7. Dataset details

      View table
      View in Article

      Table 7. Dataset details

      镜像配置版本
      数据集名称Car数据集
      来源改编自A2D2数据集
      A2D2数据集总量2.3 TB
      摄像头帧率30 FPS
      选取帧数6 254张图片
      采集设备车辆前置摄像头
      摄像头视野水平视野60°,垂直视野38°
      图像分辨率1 920像素×1 208像素
      采集地点德国南部3个不同城市
      数据分类语义分割、3D边界框等
      采集场景高速公路、乡村、城市
    • Table 8. Number of instances of each label in the dataset

      View table
      View in Article

      Table 8. Number of instances of each label in the dataset

      标签种类实例数量
      Car21 712
      Van3 731
      Bus716
      Truck4 927
      Building8 145
      Person1 306
      Traffic light3 834
      Traffic signal3 344
      Lamp5 645
      Rider659
      Bike207
    • Table 9. Ablation experiment

      View table
      View in Article

      Table 9. Ablation experiment

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv8s0.7970.5720.7390.79311 137 329
      RepConv0.8060.5750.7370.81111 137 329
      EMA0.8040.5740.7570.80411 140 625
      P20.8080.5800.7650.80810 862 844
      Rep_EMA0.8020.5750.7320.82411 140 625
      Rep_p20.8060.5830.7330.79710 909 404
      EMA_p20.8110.5820.7460.78010 686 012
      Rep_EMA_p20.8080.5840.7690.77510 866 364
      Rep_EMA_p2_WIoU0.8120.5840.7470.81210 866 364
    • Table 10. YOLOv8 ablation experiments in different versions

      View table
      View in Article

      Table 10. YOLOv8 ablation experiments in different versions

      模型mAP50mAP(50-95)RecallPrecisionLayers
      YOLOv8n0.7760.5390.6930.794207
      YOLOv8n_ours0.7780.5470.7370.807287
      YOLOv8s0.7970.5720.7390.793207
      YOLOv8s_ours0.8120.5840.7470.812287
    • Table 11. Comparison of Total-loss functions for different losses

      View table
      View in Article

      Table 11. Comparison of Total-loss functions for different losses

      损失函数最小损失值平均损失值
      CIoU9.12510.011
      Focal-CIoU8.7409.555
      Focal-DIoU9.50810.476
      Focal-EIoU9.17010.069
      Focal-GIoU8.7749.557
      WIoU7.0688.683
    • Table 12. Comparative experiments

      View table
      View in Article

      Table 12. Comparative experiments

      模型mAP50mAP(50-95)RecallPrecisionParameters
      YOLOv30.7920.5570.7520.81561 551 280
      YOLOv5s0.7670.5110.7020.8077 039 792
      YOLOv7-tiny0.7550.4940.6620.8086 034 656
      YOLOv8s0.7970.5720.7390.79311 137 329
      SSD0.5680.3260.4030.83925 082 528
      Gold-YOLO0.7880.5430.6810.78823 232 300
      Faster RCNN0.7550.4300.7930.611136 893 874
      RetinaNet0.5280.3070.4110.81536 537 287
      Rep_EMA_p2_WIoU0.8120.5840.7470.81210 866 364
    Tools

    Get Citation

    Copy Citation Text

    Longchun WANG, Wei FANG, Lijuan ZHANG, Dongming LI. Improved autonomous driving object detection based on YOLOv8s[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(5): 773

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 20, 2024

    Accepted: --

    Published Online: Jun. 18, 2025

    The Author Email: Dongming LI (LDM0214@163.com)

    DOI:10.37188/CJLCD.2024-0290

    Topics