Spacecraft Recovery & Remote Sensing, Volume. 46, Issue 4, 164(2025)

Standardized Remote Sensing Data Processing and Application for Emergency Observation

Jian YANG1,2, Xiaofei MI1,2、*, Zhiqiang SHEN3, Zhenzhao JIANG1,2, Xiangzhi HUANG1,2, Yu WU4, Gengke WANG1,2, Tao YU1,2, and Fangrong GUO5
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100094, China
  • 2Demonstration Center for Spaceborne Remote Sensing, China National Space Administration, Beijing 100101, China
  • 3Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
  • 4School of Earth System Science, Tianjin University, Tianjin 300072, China
  • 5Shandong Jimu Space Technology Co., Ltd., Yantai 264003, China
  • show less
    Figures & Tables(10)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Satellite observation requirements for various disaster types

      View table
      View in Article

      Table 1. Satellite observation requirements for various disaster types

      灾种主要数据类型空间分辨率重访周期
      地震灾害可见光/近红外/SAR亚米~20 m数小时~5 d
      地质灾害可见光/近红外/SAR亚米~20 m数小时~5 d
      洪涝灾害可见光/SAR2 m~5 m1 d
      干旱灾害高光谱/热红外/微波100 m10 d
      气象灾害可见光/近红外50 m1 d
      森林草原火灾风险可见光/近红外短波红外/中波红外/长波红外250 m~2000 m10 min~2次/天
      海洋灾害可见光/微波/近红外/短波红外/中红外/热红外3 m~1000 m1~2次/天
      城市灾害可见光/SAR亚米~1 m2~4 d
    • Table 2. Satellite observation requirements for various disaster types

      View table
      View in Article

      Table 2. Satellite observation requirements for various disaster types

      分析尺度特点关注重点具体实例
      国家尺度从宏观层面把握,覆盖范围为整个国家灾害对全国的整体影响气候异常对全国粮食 生产的影响
      地区尺度聚焦特定区域,关注灾害传播路径和范围灾害在特定区域的传播模式台风路径和暴雨导致 的洪涝范围
      目标尺度深入到城市、社区乃至单体建筑层面灾害对城市、社区及单体建筑的具体影响城市基础设施损坏程度、建筑受损情况
    • Table 3. Comparison of spatial grid partitioning methods

      View table
      View in Article

      Table 3. Comparison of spatial grid partitioning methods

      特性五层十五级GeoSOT
      调度效率 精简层级提高了影像调度效率,适用于大多数结构化数据需求 提供较高的空间精度,但在大规模数据调度时计算复杂度较高
      异构数据处理能力 对单一数据源优化较好,对多源数据的适配性需要额外预处理 适用于统一格式数据,处理多源异构数据时可能遇到精度和格式转换问题
      复杂数据场景 更适合结构化数据场景,灵活性较低,适应复杂数据场景时可能受限 空间统一性较好,适合统一格式数据,但对异构数据的适应能力较弱
      标准适配性 符合国家比例尺标准,易于满足工程需求 固定网格划分适合一定标准的影像数据,但对特殊需求的灵活性较差
    Tools

    Get Citation

    Copy Citation Text

    Jian YANG, Xiaofei MI, Zhiqiang SHEN, Zhenzhao JIANG, Xiangzhi HUANG, Yu WU, Gengke WANG, Tao YU, Fangrong GUO. Standardized Remote Sensing Data Processing and Application for Emergency Observation[J]. Spacecraft Recovery & Remote Sensing, 2025, 46(4): 164

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing Application Services

    Received: Jan. 26, 2025

    Accepted: --

    Published Online: Sep. 12, 2025

    The Author Email: Xiaofei MI (mixf@aircas.ac.cn)

    DOI:10.3969/j.issn.1009-8518.2025.04.014

    Topics