Optical Technique, Volume. 49, Issue 5, 513(2023)

Thin film lithium niobate waveguide mode converter based on nanowire-loaded structure

ZHANG Cheng1, XU Yin1,2, DONG Yue1,2, ZHANG Bo1,2, and NI Yi1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [1] [1] Lin J T, Xu Y X, Fang Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports,2015,5:8072.

    [2] [2] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser and Photonics Reviews,2012,6(4):488-503.

    [3] [3] Wang C, Burek M J, Lin Z, et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express,2014,22(25):30924-30933.

    [4] [4] Qi Y F, Li Y.Integrated lithium niobate photonics[J]. Nanophotonics,2020,9(6):1287-1320.

    [5] [5] Zhang M R, Ai W, Chen K X, et al. A lithium-niobate waveguide directional coupler for switchable mode multiplexing[J]. IEEE Photonics Technology Letters,2018,30(20):1764-1767.

    [6] [6] Wu X R, Huang C R, Xu K, et al. Mode-division multiplexing for silicon photonic network-on-chip[J]. Journal of Lightwave Technology,2017,35(15):3223-3228.

    [7] [7] Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch[J]. Optica,2015,2(6):530-535.

    [8] [8] Han X, Xiao H F, Liu Z L, et al. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks[J]. Journal of Lightwave Technology,2019,37(3):1008-1013.

    [9] [9] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics,2010,4(8):495-497.

    [10] [10] Dai D X. Silicon nanophotonic integrated devices for on-chip multiplexing and switching[J]. Journal of Lightwave Technology,2017,35(4):572-587.

    [11] [11] Sun C, Yu Y, Chen G, et al. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks[J]. Optics Letters,2016,41(14):3257-3260.

    [12] [12] Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. Journal of Lightwave Technology,2012,30(15):2421-2426.

    [13] [13] Ding Y H, Xu J, Da R, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express,2013,21(8):10376-10382.

    [14] [14] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials,2014,13(2):139-150.

    [15] [15] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics,2016,79(7):076401.

    [16] [16] Wang C, Xiong X, Andrade N, et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides[J]. Optics Express,2017,25(6):6963-6973.

    [17] [17] Li Z Y, Kim M H, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology,2017,12(7):675-683.

    [18] [18] Wang C, Li Z Y, Kim M H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nature Communications,2017,8:2098.

    [19] [19] Han X, Jiang Y H, Frigg A, et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform[J]. Laser and Photonics Reviews,2021,16(1):2100529.

    [20] [20] Alquliah A, Elkabbash M, Zhang J H, et al. Ultrabroadband, compact, polarization independent and efficient metasurface-based power splitter on lithium niobate waveguides[J]. Optics Express,2021,29(6):8160-8170.

    [21] [21] Delaney M, Zeimpekis L, Lawson D, et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3[J]. Advanced Functional Materials,2020,30(36):2002447.

    [22] [22] Soldano LB, Pennings ECM. Optical multimode interference devices based on self-imaging-principles and applications[J]. Journal of Lightwave Technology,1995,13(4):615-627.

    [23] [23] Yu N F, Genevet P, Aieta F, et al. Flat Optics: Controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics,2013,19(3):4700423.

    [24] [24] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337.

    [25] [25] Qi Y, Xu Y, Zhang B, et al. Etched circular waveguide-based on-chip silicon mode-order converters[J].Applied Optics,2021,60(22):6422-6428.

    [26] [26] Sullivan D M. Electromagnetic simulation using the FDTD method[M]. IEEE Press:Piscataway,New Jersey,USA,2000.

    [27] [27] Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology,2021,39(13):4374-4389.

    [28] [28] Lim A, Song J F, Fang Q, et al. Review of silicon photonics foundry efforts[J]. IEEE Journal of Selected Topics in Quantum Electronics,2014,20(4):8300112.

    [29] [29] Boes A, Corcoran B, Chang L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser and Photonics Reviews,2018,12(4):1700256.

    [30] [30] Molesky S, Lin Z, Piggott A, et al. Inverse design in nanophotonics[J]. Nature Photonics,2018,12(11):659-670.

    [31] [31] Guo R, Decker M, Setzpfandt F, et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas[J]. Science Advances,2017,3(7):1700007.

    [32] [32] Meng Y, Hu F T, Liu Z T, et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express,2019,27(12):16425-16439.

    [33] [33] Ohana D, Desiatov B, Mazurski N, et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters,2016,16(12):7956-7961.

    [34] [34] Xu Y, Liu L, Hu X, et al. Scalable silicon-based mode-order converters assisted by tapered metal strip layer[J]. Optics and Laser Technology,2022,151:108028.

    [35] [35] Jiang R Z, Xu Y, Dong Y, et al. Integrated TM-through/TE-converted polarization beam splitter based on z-cut lithium niobate-on-insulator platform[J]. Optik,2022,255:168690.

    [36] [36] Yang G, Sergienko A, Ndao A. Tunable polarization mode conversion using thin-film lithium niobate ridge waveguide[J]. Optics Express,2021,29(12):18565-18571.

    [37] [37] Xu Q, Chen F, Xue S D, et al. A fundamental mode converter based on tapered LiNbO3-on-insulator photonic wire with a laterally asymmetric structure[J]. Physica E-Low-Dimensional Systems and Nanostructures,2021,136:115028.

    [38] [38] Kaushalram A, Hegde G, Talabattula S. Mode hybridization analysis in thin film lithium niobate strip multimode waveguides[J]. Scientific Reports,2020,10(1):16692.

    [39] [39] Thiele F, Vom F, Quiring V, et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J]. Optics Express,2020,28(20):28961-28968.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Cheng, XU Yin, DONG Yue, ZHANG Bo, NI Yi. Thin film lithium niobate waveguide mode converter based on nanowire-loaded structure[J]. Optical Technique, 2023, 49(5): 513

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 13, 2023

    Accepted: --

    Published Online: Jan. 4, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics