Chinese Journal of Lasers, Volume. 41, Issue 7, 703011(2014)
Experimental Investigation on Warm Micro-Forming by Laser-Driven Flyer
[1] [1] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12): 1213-1229.
[2] [2] Peyre P, Scherpereel X, Berthe L, et al.. Current trends in laser shock processing[J]. Surface Engineering, 1998, 14(5): 377-380.
[3] [3] Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. J Microelectromechanical Systems, 2010, 19(2): 273-281.
[4] [4] Cheng G J, Pirzada D, Ming Z. Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming[J]. Journal of Applied Physics, 2007, 101(6): 063108.
[5] [5] Zhou J Z, Yang J C, Zhang Y K, et al.. A study on super-speed forming of metal sheet by laser shock waves[J]. Journal of Materials Processing Technology, 2002, 129(1): 241-244.
[6] [6] Ocaa J L, Morales M, Porro J A, et al.. Laser shock microforming of thin metal sheets with ns lasers[J]. Physics Procedia, 2011, 12(8): 201-206.
[7] [7] Liu H, Shen Z, Wang X, et al.. Numerical simulation and experimentation of a novel laser indirect shock forming[J]. Journal of Applied Physics, 2009, 106(6): 063107.
[9] [9] Wang Xiao, Yang Kun, Liu Huixia, et al.. [J]. Journal of Plasticity Engineering, 2009, 16(1): 25-30.
[10] [10] Liu H, Shen Z, Wang X, et al.. Micromould based laser shock embossing of thin metal sheets for MEMS applications[J]. Applied Surface Science, 2010, 256(14): 4687-4691.
[11] [11] Zhou Jianzhong, Gao Bin, Huang Shu, et al.. Research on laser shock induced composite forming of copper foil flyer[J]. Chinese J Lasers, 2012, 39(7): 0703009.
[12] [12] Liu H, Wang H, Shen Z, et al.. The research on micro-punching by laser-driven flyer[J]. International Journal of Machine Tools and Manufacture, 2012, 54: 18-24.
[13] [13] Vollertsen F, Biermann D, Hansen H N, et al.. Size effects in manufacturing of metallic components[J]. CIRP Annals-Manufacturing Technology, 2009, 58(2): 566-587.
[14] [14] Egerer E, Engel U. Process characterization and material flow in microforming at elevated temperatures[J]. Journal of Manufacturing Processes, 2004, 6(1): 1-6.
[15] [15] Eichenhueller B, Egerer E, Engel U. Microforming at elevated temperature-forming and material behaviour[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(1-2): 119-124.
[16] [16] Eichenhüller B, Engel U. Microforming of titanium-forming behaviour at elevated temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222(1): 77-82.
[17] [17] Ye C, Liao Y, Cheng G J. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Advanced Engineering Materials, 2010, 12(4): 291-297.
[18] [18] Ye C, Cheng G J. Effects of temperature on laser shock induced plastic deformation: the case of copper[J]. Journal of Manufacturing Science and Engineering, 2010, 132(6): 061009.
[19] [19] Fabbro R, Fournier J, Ballard P, et al.. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.
[20] [20] Rhim S H, Son Y K, Oh S I. Punching of ultra small size hole array[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1): 261-264.
[21] [21] Li Ming, Wen Shizhu. Theoretical methods on nanoindentation[J]. Chinese Journal of Mechanical Engineering, 2003, 39(3): 142-145.
[22] [22] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[23] [23] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.
[24] [24] Zhang W, Noyan I C, Yao Y L. Microscale laser shock peening of thin films, part 2: high spatial resolution material characterization[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 18-24.
[25] [25] Nagarajan B, Castagne S, Wang Z. Mold-free fabrication of 3D microfeatures using laser-induced shock pressure[J]. Applied Surface Science, 2013, 268(1): 529-534.
[26] [26] Wang X, Du D, Zhang H, et al.. Investigation of microscale laser dynamic flexible forming process-simulation and experiments[J]. International Journal of Machine Tools and Manufacture, 2013, 67: 8-17.
[27] [27] Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. Journal of Microelectromechanical Systems, 2010, 19(2): 273-281.
[28] [28] Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium[J]. Acta Materialia, 1997, 45(10): 4019-4025.
[29] [29] Ren Mingxing, Li Bangsheng, Yang Chuang, et al.. Hardness and elastic modulus of microcastings by nanoindentation[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(2): 231-236.
[30] [30] Zhu Xiangqun, Zhou Ming, Dai Qixun, et al.. Investigation of surface ultra-refinement of austenitic stainless steel induced by laser shock processing[J]. China Mechanical Engineering, 2005, 16(17): 1581-1585.
[31] [31] Liu H X, Hu Y, Wang X, et al.. Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation[J]. Materials Science and Engineering: A, 2013, 564: 13-21.
[32] [32] Yang Yang, Cheng Xinlin. Current status and trends in researches on adiabatic shearing[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401-408.
Get Citation
Copy Citation Text
Liu Huixia, Zhang Qiang, Gu Chunxing, Shen Zongbao, Ma Youjuan, Gu Yuxuan, Wang Xiao. Experimental Investigation on Warm Micro-Forming by Laser-Driven Flyer[J]. Chinese Journal of Lasers, 2014, 41(7): 703011
Category: laser manufacturing
Received: Dec. 30, 2013
Accepted: --
Published Online: May. 14, 2014
The Author Email: Qiang Zhang (zhj1310@qq.com)