Chinese Optics, Volume. 16, Issue 2, 229(2023)
Research progress of gas detection based on laser-induced thermoelastic spectroscopy
[1] [1] LI ZH J, CHEN X L, ZHENG H L. Ecological[M]. 4th ed. Beijing: Science Press, 2014. (in Chinese)
[2] DUAN L, CHEN X, MA X X, et al. Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification[J]. Environmental Pollution, 218, 1191-1199(2016).
[3] LU L H. The first Arctic ozone hole in 2020[J]. Chinese Journal of Polar Research, 32, 415-416(2020).
[4] NURJULIANA M, CHE MAN Y B, MAT HASHIM D, et al. Rapid identification of pork for
[5] MANOILOV V V, NOVIKOV L V, ZARUTSKII I V, et al. Methods for processing mass spectrometry signals from exhaled gases for medical diagnosis[J]. Biomedical Engineering, 53, 355-359(2020).
[6] YUAN ZH G, MA X ZH, LIU X N, . Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 13, 281-289(2020).
[7] ZHONG L, SONG D, JIAO Y, . TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 13, 1044-1054(2020).
[8] LIU W Q, CUI ZH CH, LIU J G, . Measurement of atmospheric trace gases by spectroscopic and chemical techniques[J]. Chinese Journal of Quantum Electronics, 21, 202-210(2004).
[9] MA Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Physica Sinica, 70, 160702(2021).
[10] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, s3-20, 305-324(1880).
[11] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 27, 1902-1904(2002).
[12] ROUSSEAU R, LOGHMARI Z, BAHRIZ M, et al. Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator[J]. Optics Express, 27, 7435-7446(2019).
[13] MA Y F, YU X, YU G, et al. Multi-quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 107, 021106(2015).
[14] YI H M, MAAMARY R, GAO X M, et al. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy[J]. Applied Physics Letters, 106, 101109(2015).
[15] MA Y F, HE Y, YU X, et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork[J]. Sensors & Actuators B:Chemical, 233, 388-393(2016).
[16] MA Y F, HE Y, TONG Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 26, 32103-32110(2018).
[17] MA Y F. Recent advances in QEPAS and QEPTS based trace gas sensing: A Review[J]. Frontiers in Physics, 8, 268(2020).
[18] PETRA N, ZWECK J, KOSTEREV A A, et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor[J]. Applied Physics B, 94, 673-680(2009).
[19] HUANG Q X, WNAG M C, ZHAO J, . Scanning probe microscopy using quartz tuning fork[J]. Journal of Mechanical Engineering, 48, 1-5(2012).
[20] JIANG M, FENG Q L, LIANG T L, . Recent advances in quartz-enhanced photoacoustic spectrophone[J]. Laser & Optoelectronics Progress, 52, 090002(2015).
[21] LI Y W, WANG Q, LI J S. An enhanced photodetector based on QTF[J]. Industrial Control Computer, 35, 89-90(2022).
[22] POHLKÖTTER A, WILLER U, BAUER C, et al. Resonant tuning fork detector for electromagnetic radiation[J]. Applied Optics, 48, B119-B125(2009).
[23] [23] WILLER U, ROMANO C, SCHADE W. Compact gas sensing system based on infrared LED resonant detection with quartz tuning fk[C]. 2009 Conference on Lasers ElectroOptics 2009 Conference on Quantum electronics Laser Science Conference, IEEE, 2009.
[24] DING J Y, HE T B, ZHOU SH, et al. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy[J]. Applied Physics B, 124, 78(2018).
[25] HE Y, MA Y F, TONG Y, et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high
[26] ZHENG K Y, ZHENG CH T, HU L E, et al. Light-induced off-axis cavity-enhanced thermoelastic spectroscopy in the near-infrared for trace gas sensing[J]. Optics Express, 29, 23213-23224(2021).
[27] LIU X N, MA Y F. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited][J]. Chinese Optics Letters, 20, 031201(2022).
[28] LIU X N, QIAO SH D, MA Y F. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering[J]. Optics Express, 30, 1304-1313(2022).
[29] ZHANG Q D, CHANG J, CONG ZH H, et al. Quartz tuning fork enhanced photothermal spectroscopy gas detection system with a novel QTF-self-difference technique[J]. Sensors and Actuators A:Physical, 299, 111629(2019).
[30] RUSSO S D, ZIFARELLI A, PATIMISCO P, et al. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy[J]. Optics Express, 28, 19074-19084(2020).
[31] WEI T T, WU H P, DONG L, et al. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector[J]. Optics Express, 29, 12357-12364(2021).
[32] MA Y F, HU Y Q, QIAO SH D, et al. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy[J]. Photoacoustics, 20, 100206(2020).
[33] HU Y Q, QIAO SH D, HE Y, et al. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing[J]. Optics Express, 29, 5121-5127(2021).
[34] MA Y F, HU Y Q, QIAO SH D, et al. Quartz tuning forks resonance frequency matching for laser spectroscopy sensing[J]. Photoacoustics, 25, 100329(2022).
[35] QIAO SH D, HE Y, MA Y F. Trace gas sensing based on single-quartz-enhanced photoacoustic–photothermal dual spectroscopy[J]. Optics Letters, 46, 2449-2452(2021).
[36] MA Y F, HE Y, PATIMISCO P, et al. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork[J]. Applied Physics Letters, 116, 011103(2020).
[37] QIAO SH D, MA Y F, HE Y, et al. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL[J]. Optics Express, 29, 25100-25108(2021).
[38] LOU C G, YANG X, LI X T, et al. Graphene-enhanced quartz tuning fork for laser-induced thermoelastic spectroscopy[J]. IEEE Sensors Journal, 21, 9819-9824(2021).
[39] LOU C G, LI X T, CHEN H J, et al. Polymer-coated quartz tuning fork for enhancing the sensitivity of laser-induced thermoelastic spectroscopy[J]. Optics Express, 29, 12195-12205(2021).
[40] ZHOU SH, XU L G, CHEN K, et al. Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating[J]. Sensors and Actuators B:Chemical, 326, 128951(2021).
[41] LOU C G, WANG Y, ZHANG Y, et al. Reduced graphene oxide/polydimethylsiloxane as an over-coating layer on quartz tuning fork for sensitive light-induced thermoelastic spectroscopy[J]. IEEE Sensors Journal, 22, 10459-10464(2022).
[42] [42] WANG Y, CHENG T, LOU C G, et al. . Carbonbased lightinduced thermoelastic spectroscopy f ammonia gas sensing[J]. Microwave Optical Technology Letters, 2022,doi: 10.1002mop.33156.
[43] LOU C G, CHEN H J, LI X T, et al. Graphene oxide and polydimethylsiloxane coated quartz tuning fork for improved sensitive near- and mid-infrared detection[J]. Optics Express, 29, 20190-20204(2021).
[44] MA Y F, LANG Z T, HE Y, et al. Ultra-highly sensitive hydrogen chloride detection based on quartz-enhanced photothermal spectroscopy[J]. Sensors, 21, 3563(2021).
[45] HU L E, ZHENG CH T, ZHANG M H, et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy[J]. Photoacoustics, 21, 100230(2021).
[46] ZHANG Q D, GONG W H, CHANG J, et al. Long-distance free space gas detection system based on QEPTS technique for CH4 leakage monitoring[J]. Infrared Physics and Technology, 122, 104091(2022).
[47] HU L E, ZHENG CH T, ZHANG Y, et al. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing[J]. Optics Letters, 45, 1894-1897(2020).
Get Citation
Copy Citation Text
Cun-guang LOU, Jia-liang DAI, Rui-kai LI, Xiu-ling LIU, Jian-quan YAO. Research progress of gas detection based on laser-induced thermoelastic spectroscopy[J]. Chinese Optics, 2023, 16(2): 229
Category: Review
Received: Jun. 20, 2022
Accepted: Sep. 9, 2022
Published Online: Apr. 4, 2023
The Author Email: