Acta Optica Sinica, Volume. 36, Issue 10, 1026005(2016)
Beam Shaping Based on Photopatterned Liquid Crystals
[1] [1] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.
[2] [2] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.
[3] [3] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
[4] [4] Siviloglou G, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.
[5] [5] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.
[6] [6] Yalizay B, Soylu B, Akturk S. Optical element for generation of accelerating Airy beams[J]. Journal of the Optical Society of America A, 2010, 27(10): 2344-2346.
[7] [7] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.
[8] [8] Machavariani G, Lumer Y, Moshe I, et al. Efficient extracavity generation of radially and azimuthally polarized beams[J]. Optics Letters, 2007, 32(11): 1468-1470.
[9] [9] Polynkin P, Kolesik M, Moloney J V, et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.
[10] [10] Cao R, Yang Y, Wang J, et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency[J]. Applied Physics Letters, 2011, 99(26): 261106.
[11] [11] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150.
[12] [12] Zhou J X, Liu Y C, Ke Y G, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.
[13] [13] Beresna M, Gecevicius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.
[14] [14] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206.
[15] [15] Kitzerow H S. Polymer-dispersed liquid crystals from the nematic curvilinear aligned phase to ferroelectric films[J]. Liquid Crystals, 1994, 16(1): 1-31.
[16] [16] Ren H W, Lin Y H, Wu S T. Linear to axial or radial polarization conversion using a liquid crystal gel[J]. Applied Physics Letters, 2006, 89(5): 051114.
[17] [17] Luo D, Dai H T, Sun X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal[J]. Optics Express, 2013, 21(25): 31318-31323.
[18] [18] Ge S J, Ji W, Cui G X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating[J]. Optical Materials Express, 2014, 4(12): 2535-2541.
[19] [19] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes[J]. Nature Communications, 2013, 4: 2289.
[20] [20] Chen J, Bos P J, Vithana H, et al. Electro-optically controlled liquid crystal diffraction grating[J]. Applied Physics Letters, 1995, 67(18): 2588-2590.
[21] [21] Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.
[22] [22] Kim J H, Yoneya M, Yokoyama H. Tristable nematic liquid-crystal device using micropatterned surface alignment[J]. Nature, 2002, 420(6912): 159-162.
[23] [23] Wen B, Petschek R G, Rosenblatt C. Nematic liquid-crystal polarization gratings by modification of surface alignment[J]. Applied Optics, 2002, 41(7): 1246-1250.
[24] [24] Honma M, Nose T. Polarization-independent liquid crystal grating fabricated by microrubbing process[J]. Japanese Journal of Applied Physics, 2003, 42(11): 6992-6997.
[25] [25] Schadt M, Schmitt K, Kozinkov V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers[J]. Japanese Journal of Applied Physics, 1992, 31(7R): 2155-2164.
[26] [26] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal[J]. Nature, 1996, 381: 212-215.
[27] [27] Hu W, Srivastava A K, Lin X W, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments[J]. Applied Physics Letters, 2012, 100(11): 111116.
[28] [28] Blinov L M, Barberi R, Cipparrone G, et al. Liquid crystal orientation by holographic phase gratings recorded on photosensitive Langmuir-Blodgett films[J]. Liquid Crystals, 1999, 26(3): 427-436.
[29] [29] Provenzano C, Pagliusi P, Cipparrone G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces[J]. Applied Physics Letters, 2006, 89(12): 121105.
[30] [30] Li Y M, Kim J, Escuti M J. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings[J]. Applied Optics, 2012, 51(34): 8236-8245.
[31] [31] Culbreath C, Glazar N, Yokoyama H. Note: automated maskless micro-multidomain photoalignment[J]. Review of Scientific Instruments, 2011, 82(12): 126107.
[32] [32] Wu H, Hu W, Hu H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system[J]. Optics Express, 2012, 20(15): 16684-16689.
[33] [33] Miskiewicz M N, Escuti M J. Direct-writing of complex liquid crystal patterns[J]. Optics Express, 2014, 22(10): 12691-12706.
[34] [34] Chen P, Lu Y Q, Hu W. Beam shaping via photopatterned liquid crystals[J]. Liquid Crystals, 2016, DOI:10.1080/02678292.2016.1191685.
[35] [35] Akiyama H, Kawara T, Takada H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells[J]. Liquid Crystals, 2002, 29(10): 1321-1327.
[36] [36] Chigrinov V, Pikin S, Verevochnikov A, et al. Diffusion model of photoaligning in azo-dye layers[J]. Physical Review E, 2004, 69(6): 061713.
[37] [37] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.
[38] [38] Wei B Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595.
[39] [39] Lin X W, Hu W, Hu X K, et al. Fast response dual-frequency liquid crystal switch with photo-patterned alignments[J]. Optics Letters, 2012, 37(17): 3627-3629.
[40] [40] Berry M V. The adiabatic phase and Pancharatnam′s phase for polarized light[J]. Journal of Modern Optics, 1987, 34(11): 1401-1407.
[41] [41] Nersisyan S, Tabiryan N, Steeves D, et al. Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching[J]. Journal of Nonlinear Optical Physics & Materials, 2009, 18(1): 1-47.
[42] [42] Du T, Fan F, Tam A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195.
[43] [43] Duan W, Chen P, Wei B Y, et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating[J]. Optical Materials Express, 2016, 6(2): 597-602.
[44] [44] Chen H, Weng Y, Xu D, et al. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate[J]. Optics Express, 2016, 24(7): 7287-7298.
[45] [45] Chen P, Wei B Y, Ji W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133-139.
[46] [46] Lei T, Zhang M, Li Y, et al. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light: Science & Applications, 2015, 4: e257.
[47] [47] Liu J, Min C, Lei T, et al. Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray[J]. Optics Express, 2016, 24(1): 212-218.
[48] [48] Ge S J, Chen P, Ma L L, et al. Optical array generator based on blue phase liquid crystal Dammann grating[J]. Optical Materials Express, 2016, 6(4): 1087-1092.
[49] [49] Fu S Y, Zhang S K, Wang T L, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 2016, 24(6): 6240-6248.
[50] [50] Chen P, Ge S J, Ma L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals[J]. Physical Review Applied, 2016, 5(4): 044009.
[51] [51] Zhou C H, Liu L R. Numerical study of Dammann array illuminators[J]. Applied Optics, 1995, 34(26): 5961-5969.
[52] [52] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.
[53] [53] Slussarenko S, Murauski A, Du T, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090.
[54] [54] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 2016, 6: 25528.
[55] [55] Wang X L, Ding J P, Ni W J, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 2007, 32(24): 3549-3551.
[56] [56] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 2012, 20(19): 21715-21721.
[57] [57] Chen P, Ji W, Wei B Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates[J]. Applied Physics Letters, 2015, 107(24): 241102.
[58] [58] Ko S W, Ting C L, Fuh A Y G, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal[J]. Optics Express, 2010, 18(4): 3601-3607.
[59] [59] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10: 327-332.
[60] [60] Wei B Y, Chen P, Hu W, et al. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask[J]. Scientific Reports, 2015, 5: 17484.
[61] [61] Wu S T. Birefringence dispersions of liquid crystals[J]. Physical Review A, 1986, 33(2): 1270.
[62] [62] Wang L, Lin X W, Liang X, et al. Large birefringence liquid crystal material in terahertz range[J]. Optical Materials Express, 2012, 2(10): 1314-1319.
[63] [63] Wei B Y, Chen P, Ge S J, et al. Liquid crystal depolarizer based on photoalignment technology[J]. Photonics Research, 2016, 4(2): 70-73.
[64] [64] Wang L, Lin X W, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light: Science & Applications, 2015, 4: e253.
[65] [65] Ma L L, Li S S, Li W S, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals[J]. Advanced Optical Materials, 2015, 3(12): 1691-1696.
[66] [66] Ma Y, Wei B, Shi L, et al. Fork gratings based on ferroelectric liquid crystals[J]. Optics Express, 2016, 24(6): 5822-5828.
[67] [67] Ke Y, Liu Y, Zhou J, et al. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens[J]. Applied Physics Letters, 2016, 108(10): 101102.
Get Citation
Copy Citation Text
Chen Peng, Xu Ran, Hu Wei, Lu Yanqing. Beam Shaping Based on Photopatterned Liquid Crystals[J]. Acta Optica Sinica, 2016, 36(10): 1026005
Special Issue:
Received: Jul. 6, 2016
Accepted: --
Published Online: Oct. 12, 2016
The Author Email: Peng Chen (njuchenpeng@163.com)