Acta Optica Sinica, Volume. 33, Issue 4, 411001(2013)
Super-Resolution Method of Closely Spaced Objects Based on Sparse Reconstruction Using Single Frame Infrared Data
[1] [1] J. T. Reagan, T. J. Abatzoglou. Model-based superresolution CSO processing[C]. SPIE, 1993, 1954: 204~218
[2] [2] Lin Liangkui, Xu Hui, Long Yunli et al.. An algorithm of cluster tracking for midcourse ballistic object group by infrared multi-sensor based on probability hypothesis density filtering[J]. Acta Optica Sinica, 2011, 31(2): 0228002
[3] [3] Sheng Weidong, Long Yunli, Zhou Yiyu. Analysis of target location accuracy in space-based optical sensor network[J]. Acta Optica Sinica, 2011, 31(2): 0228001
[5] [5] J. Korn, H. Holtz, M. S. Farber. Trajectory estimation of closely spaced objects (CSO) using infrared focal plane data of an STSS (space tracking and surveillance system) platform[C]. SPIE, 2004, 5428: 387~399
[7] [7] L. Lin, X. Xu, D. Xu et al.. QPSO-based algorithm of CSO joint infrared super-resolution and trajectory estimation[J]. J. Systems Engineering and Electronics, 2011, 22(3): 405~411
[8] [8] Liu Tao, Chen Hao, Jiang Weidong et al.. A Gibbs sampling approach to closely spaced objects resolution via IR focal plane[J]. Signal Processing, 2010, 26(8): 1193~1199
[9] [9] Lin Liangkui, Xu Hui, Xu Dan et al.. Resolution of closely spaced objects via infrared focal plane using reversible jump Markov chain Monte-Carlo method[J]. Acta Optica Sinica, 2011, 31(5): 0510001
[10] [10] W. E. Lillo, N. W. Schulenburg. Bayesian closely spaced object resolution with application to real data[C]. SPIE, 2002, 4729: 152~162
[11] [11] R. M. Willett, R. F. Marcia, J. M. Nichols. Compressed sensing for practical optical imaging systems: a tutorial[J]. Opt. Eng., 2011, 50(7): 072601
[12] [12] D. Malioutov, M. etin, A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Trans. Signal Processing, 2005, 53(8): 3010~3022
[13] [13] X. X. Zhu, R. Bamler. Super-resolution power and Robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Trans. Geoscience and Remote Sensing, 2012, 50(1): 247~258
[14] [14] Shi Guangming, Liu Danhua, Gao Dahua et al.. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070~1081
[15] [15] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput., 1998, 20(1): 33~61
[16] [16] A. Maleki, D. L. Donoho. Optimally tuned iterative reconstruction algorithms for compressed sensing[J]. IEEE J. Sel. Top. Signal Processing, 2010, 4(2): 330~341
[17] [17] M. S. Lobo, L. Vandenberghe, S. Boyd et al.. Applications of second-order cone programming[J]. Linear Algebra and Applications, 1998, 284(1-3): 193~228
[18] [18] J. F. Sturm. Using SeDuMi 1.02, a Matlab Toolbox for Optimization Over Symmetric Cones [J]. Optimizaiton Methods and Software, 1999, 11(1-4): 625~653
[19] [19] J. Lfberg. Automatic robust convex programming[J]. Optimization Methods and Software, 2010, 27(1): 115~129
[20] [20] J. Hoshen, R. Kopclman. Percolation and cluster distribution. I. Cluster multiple labeling technique[J]. Phys. Rev. B, 1976, 14(8): 3438~3445
[21] [21] R. A. Irizarry. Information and posterior probability criteria for model selection in local likelihood estimation[J]. J. American Statistical Association, 2001, 96(453): 303~315
Get Citation
Copy Citation Text
Zhang Hui, Xu Hui, Lin Liangkui. Super-Resolution Method of Closely Spaced Objects Based on Sparse Reconstruction Using Single Frame Infrared Data[J]. Acta Optica Sinica, 2013, 33(4): 411001
Category: Imaging Systems
Received: Oct. 3, 2012
Accepted: --
Published Online: Mar. 5, 2013
The Author Email: Hui Zhang (zhanghui_128a@163.com)