Photonic Sensors, Volume. 6, Issue 4, 372(2016)
Effects of Rubber Shock Absorber on the Flywheel Micro Vibration in the Satellite Imaging System
[1] [1] Z. Wei, D. Li, Q. Luo, and J. Jiang, “Modeling and analysis of a flywheel microvibration isolation system for spacecrafts,” Advances in Space Research, 2015, 55(2): 761-777.
[2] [2] D. O. Lee, G. Park, and J. H. Han, “Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid,” Aerospace Science and Technology, 2015, 45: 1-9.
[3] [3] C. Liu, X. Jing, S. Daley, and F. Li, “Recent advances in micro-vibration isolation,” Mechanical System and Signal Processing, 2015, 56(1): 55-80.
[4] [4] V. G. Geethamma, R. Asaletha, N. Kalarikkal, and S. Thomas, “Vibration and sound damping in polymers,” Resonance, 2014, 19(9): 821-833.
[5] [5] M. Abdulhadi, “Stiffness and damping cofficients of rubber,” Archive of Applied Mechanics, 1985, 55(6): 421-427.
[6] [6] S. E. Klenke and T. J. Baca, “Structural dynamics test simulation and optimization for aerospace components,” Expert Systems with Applications, 1996, 11(4): 82-89.
[7] [7] J. C. Dixon, The shock absorber handbook. New York: SAE International, 2007.
[8] [8] J. Njuguna and K. Pielichowski, “The role of advanced polymer materials in aerospace,” Research Gate, 2013: 1-48.
[9] [9] A. Dall’Asta and L. Ragni, “Nonlinear behavior of dynamic systems with high damping rubber devices,” Engineering Structure, 2008, 30(12): 3610-3618.
[10] [10] D. W. Nelson and N. W. Nelson, “Finite element analysis in design with rubber,” Chemistry and Technology, 1990, 63(3): 368-406.
[11] [11] T. J. R. Hughes, The finite element method: linear static and dynamic finite element analysis. New Jersey: Prentice Hall, 2000.
[12] [12] L. Chen, “Numerical methods for analysing static characteristics of rubber isolator,” Journal of Vibration and Shock, 2005, 25(123-124): 56-61.
[13] [13] M. Sjoberg, “On dynamic properties of rubber isolators,” Ph.D. dissertation, Kungliga Tekniska hgskolan, 2002.
[14] [14] M. Sjoberg, “Rubber isolators measurements and modelling using fractional derivatives and friction,” SAE Technical Paper, 2000, 1(3518): 133-144.
[15] [15] M. D. Lieber, “Space-based optical system performance evaluation with integrated modeling tools,” SPIE, 2004, 5420: 85-96.
[16] [16] D. M. LoBosco, C. Blaurock, S. J. Chung, and D. W. Miller, “Integrated modeling of optical performance for the Terrestrial Planet Finder structurally connected interferometer,” SPIE, 2004, 5497: 278-289.
[17] [17] O. L. D. Weck, D. W. Miller, G. J. Mallory, and G. E. Mosier, “Integrated modeling and dynamics simulation for the next generation space telescope (NGST),” SPIE, 2000, 4013: 920-934.
[18] [18] W. Zhou and D. Li, “Experimental research on a vibration isolation platform for momentum wheel assembly,” Journal of Sound and Vibration, 2013, 332(5): 1157-1171.
[19] [19] D. W. Miller, O. L. D. Weck, and G. E. Mosier, “Framework for multidisciplinary integrated modeling and analysis of space telescope,” Integrated Modeling of Telescopes, 2002, 4757: 1-18.
[20] [20] L. M. Elias, F. G. Dekens, I. Basdogan, and L. A. Sievers, “Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure,” SPIE, 2003, 4852: 541-555.
[21] [21] D. O. Lee, J. S. Yoon, and J. H. Han, “Development of integrated simulation tool for jitter analysis,” International Journal of Aeronautical and Space Sciences, 2012, 13(1): 64-73.
[22] [22] A. S. Glassner, “An introduction to ray tracing,” Morgan Kaufmann Publishers, 1989, 34(2): 417-417.
[23] [23] M. Katz, Introduction to geometrical optics. New Jersey: World Scientific, 2002.
[24] [24] H. T. Yang, J. Z. Cao, Z. Y. Fan, and W. N. Chen, “The research of the high precision universal stable reconnaissance platform in near space,” International Symposium on Photoelectronic Detection and Imaging, 2011, 8196(3): 111-116.
[25] [25] S. Hadden, T. Davis, P. Buchele, J. Boyd, and T. L. Hintz, “Heavy load vibration isolation system for airborne payloads,” SPIE, 2001, 4332: 171-182.
[26] [26] B. Zhang, X. Wang, and Y. Hu, “Integrated modeling and optical jitter analysis of a high resolution space camera,” SPIE, 2012, 8415: 841508-1-841508-7.
[27] [27] O. Hadar and N. S. Kopeika, “Numerical calculation of MTF for image motion: experimental verification,” SPIE, 1992, 1697: 183-197.
[28] [28] O. Hadar, I. Dror, and N. S. Kopeika, “Real-time numerical calculation of optical transfer function for image motion and vibration. Part 1: experimental verification,” Optical Engineering, 1997, 33(2): 566-578.
[29] [29] W. Zhou, L. Dongxu, Q. Luo, and K. Liu, “Analysis and testing of microvibrations produced by momentum wheel assemblies,” Chinese Journal of Aeronautics, 2012, 25(4): 640-649.
[30] [30] W. Y. Zhou, G. S. Aglietti, and Z. Zhang, “Modelling and testing of a soft suspension design for a reaction/momentum wheel assembly,” Journal of Sound and Vibration, 2011, 330(18): 4596-4610.
Get Citation
Copy Citation Text
Changcheng DENG, Deqiang MU, Xuezhi JIA, Zongxuan LI. Effects of Rubber Shock Absorber on the Flywheel Micro Vibration in the Satellite Imaging System[J]. Photonic Sensors, 2016, 6(4): 372
Category: Regular
Received: May. 24, 2016
Accepted: Jun. 16, 2016
Published Online: Oct. 21, 2016
The Author Email: DENG Changcheng (changcheng0211@163.com)