Journal of Inorganic Materials, Volume. 40, Issue 4, 372(2025)
[1] TANG R, WANG X, LIAN W et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature Energy, 587(2020).
[2] PAN Y, HU X, GUO Y et al. Vapor transport deposition of highly efficient Sb2(S,Se)3 solar cells
[3] GAO J, CHE B, CAI H et al. Single-source thermal evaporation converts anion controllable Sb2(S,Se)3 film for fabricating high- efficiency solar cell[J]. Science China Materials, 3415(2023).
[4] CALIXTO-RODRIGUEZ M, GACIA H M, NAIR M T S et al. Antimony chalcogenide/lead selenide thin film solar cell with 2.5% conversion efficiency prepared by chemical deposition[J]. ECS Journal of Solid State Science and Technology, Q69(2013).
[5] ZHANG L, ZHENG J, LIU C et al. Over 10% efficient Sb2(S,Se)3 solar cells enabled by CsI-doping strategy[J]. Small, 2310418(2024).
[6] ZHAO Y, WANG S, JIANG C et al. Regulating energy band alignment
[7] NICOLAS-MARIN M M, GONZALEX-CASTILLO J R, VIGIL- GALAN O et al. The state of the art of Sb2(S, Se)3 thin film solar cells: current progress and future prospect[J]. Journal of Physics D: Applied Physics, 303001(2022).
[8] LI J, ZHAO Y, LI C et al. Hydrazine hydrate-induced surface modification of CdS electron transport layer enables 10.30%- efficient Sb2(S,Se)3 planar solar cells[J]. Advanced Science, 2202356(2022).
[9] YAO L, LIN L, LIU H et al. Front and back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon[J]. Journal of Materials Science & Technology, 130(2020).
[10] XING Y, GUO H, LIU J et al. High-efficiency Sb2(S,Se)3 solar cells with MoO3 as a hole-transport layer[J]. Journal of Alloys and Compounds, 166842(2022).
[11] ZHAO Y, LI C, NIU J et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells[J]. Journal of Materials Chemistry A, 12644(2021).
[12] LIU J, NI X, XU F et al. Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2(S,Se)3 films
[13] GUO H, HUANG S, ZHU H et al. Enhancement in the efficiency of Sb2Se3 solar cells by triple function of lithium hydroxide modified at the back contact interface[J]. Advanced Science, 2304246(2023).
[14] LI J, GAO Z, HU X et al. Defects passivation
[15] TANG R, CHEN S, ZHENG Z et al. Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells[J]. Advanced Materials, 2109078(2022).
[16] WANG W, WANG X, CHEN G et al. Over 6% certified Sb2(S,Se)3 solar cells fabricated
[17] ABDEL-SHAKOUR M, MAUSUISHI K, CHOWDHURY T H et al. Regulated oxidation and moisture permeation
[18] XIAO K, LIN R, HAN Q et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant[J]. Nature Energy, 870(2020).
[19] LI H, LIN L, YAO L et al. High-efficiency Sb2(S,Se)3 solar cells with new hole transport layer-free back architecture
[21] CHEN C, LI K, CHEN S et al. Efficiency improvement of Sb2Se3 solar cells
[22] WU F, ZHAO Y, YAO L et al. Manipulating back contact enables over 8%-efficient carbon-based Sb2(S,Se)3 solar cells[J]. Chemical Engineering Journal, 135872(2022).
[23] CHEN X, CHE B, ZHAO Y et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells[J]. Advanced Energy Materials, 2300391(2023).
[24] MAO X, BIAN M, WANG C et al. Ultrathin SnO2 buffer layer aids in interface and band engineering for Sb2(S,Se)3 solar cells with over 8% efficiency[J]. ACS Applied Energy Materials, 3022(2022).
[25] WANG Y, JIAO Y, GUO J et al. Optimization of interfacial engineering of perovskite solar cells[J]. Journal of Inorganic Materials, 1323(2023).
[26] XIA Z, ZHANG W, CHEN C et al. Improving performance of Cs2AgBiBr6 solar cell through constructing gradient energy level with deep-level hole transport material[J]. Rare Metals, 3004(2023).
[27] WU J, LV Y, WANG J et al. Performance improvement of Sb2Se3 thin-film solar cells through ultraviolet ozone treatment[J]. Rare Metals, 2671(2022).
[28] CHEN T, LUO Y, ZHU L et al. Organic-inorganic co-addition to improve mechanical bending and environmental stability of flexible perovskite solar cells[J]. Journal of Inorganic Materials, 477(2024).
[29] SHIEL H, HOBSON T, HUTTER O et al. Band alignment of Sb2O3 and Sb2Se3[J]. Journal of Applied Physics, 235301(2021).
[30] ZHANG S, LU Y, LIN B et al. PVDF-HFP additive for visible- light-semitransparent perovskite films yielding enhanced photovoltaic performance[J]. Solar Energy Materials and Solar Cells, 178(2017).
[31] WAGEH S, Al-GHAMDI A A, ZHAO L. Insights into mechanism of CsPbBr3 nanocrystal interfacial modifier in perovskite solar cells[J]. Acta Physico Chimica Sinica, 2111009(2022).
[32] ZHANG S, DONG G, LIN B et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells[J]. Journal of Power Sources, 52(2015).
[33] ZHAO J, LI X, LIN J et al. Unveiling the influence of absorber thickness on efficient Sb2(S, Se)3 solar cells through controlled chemical bath deposition[J]. Surfaces and Interfaces, 103411(2023).
[34] LIU J, CAO M, FENG Z et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3solar cells[J]. Journal of Alloys and Compounds, 165885(2022).
[35] GUO H, JIA X, LIU J et al. Classification of lattice defects and the microscopic origin of p-type conductivity of Sb2Se3 solar cell absorber with varying Al2O3-layer thicknesses[J]. Physica B: Condensed Matter, 414394(2023).
[36] ZHANG S, HU Z, ZHANG J et al. Interface engineering
Get Citation
Copy Citation Text
Xiaomeng NI, Fangxian XU, Jingjing LIU, Shuai ZHANG, Huafei GUO, Ningyi YUAN.
Category:
Received: Jul. 5, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Shuai ZHANG (shuaizhang@cczu.edu.cn), Huafei GUO (guohuafei@cczu.edu.cn)