Journal of Inorganic Materials, Volume. 40, Issue 4, 372(2025)

Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid

Xiaomeng NI1, Fangxian XU1, Jingjing LIU1, Shuai ZHANG1,3、*, Huafei GUO2,3、*, and Ningyi YUAN1,3
Author Affiliations
  • 11. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
  • 22. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
  • 33. Jiangsu Photovoltaic Science and Engineering Collaborative Innovation Center, Changzhou 213164, China
  • show less
    References(36)

    [1] TANG R, WANG X, LIAN W et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature Energy, 587(2020).

    [2] PAN Y, HU X, GUO Y et al. Vapor transport deposition of highly efficient Sb2(S,Se)3 solar cells via controllable orientation growth[J]. Advanced Functional Materials, 2101476(2021).

    [3] GAO J, CHE B, CAI H et al. Single-source thermal evaporation converts anion controllable Sb2(S,Se)3 film for fabricating high- efficiency solar cell[J]. Science China Materials, 3415(2023).

    [4] CALIXTO-RODRIGUEZ M, GACIA H M, NAIR M T S et al. Antimony chalcogenide/lead selenide thin film solar cell with 2.5% conversion efficiency prepared by chemical deposition[J]. ECS Journal of Solid State Science and Technology, Q69(2013).

    [5] ZHANG L, ZHENG J, LIU C et al. Over 10% efficient Sb2(S,Se)3 solar cells enabled by CsI-doping strategy[J]. Small, 2310418(2024).

    [6] ZHAO Y, WANG S, JIANG C et al. Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb2(S,Se)3solar cells with 10.7% efficiency[J]. Advanced Energy Materials, 2103015(2021).

    [7] NICOLAS-MARIN M M, GONZALEX-CASTILLO J R, VIGIL- GALAN O et al. The state of the art of Sb2(S, Se)3 thin film solar cells: current progress and future prospect[J]. Journal of Physics D: Applied Physics, 303001(2022).

    [8] LI J, ZHAO Y, LI C et al. Hydrazine hydrate-induced surface modification of CdS electron transport layer enables 10.30%- efficient Sb2(S,Se)3 planar solar cells[J]. Advanced Science, 2202356(2022).

    [9] YAO L, LIN L, LIU H et al. Front and back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon[J]. Journal of Materials Science & Technology, 130(2020).

    [10] XING Y, GUO H, LIU J et al. High-efficiency Sb2(S,Se)3 solar cells with MoO3 as a hole-transport layer[J]. Journal of Alloys and Compounds, 166842(2022).

    [11] ZHAO Y, LI C, NIU J et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells[J]. Journal of Materials Chemistry A, 12644(2021).

    [12] LIU J, NI X, XU F et al. Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2(S,Se)3 films via Na plus doping[J]. Physica B: Condensed Matter, 415221(2023).

    [13] GUO H, HUANG S, ZHU H et al. Enhancement in the efficiency of Sb2Se3 solar cells by triple function of lithium hydroxide modified at the back contact interface[J]. Advanced Science, 2304246(2023).

    [14] LI J, GAO Z, HU X et al. Defects passivation via potassium iodide post-treatment for antimony selenosulfide solar cells with improved performance[J]. Advanced Functional Materials, 2211657(2022).

    [15] TANG R, CHEN S, ZHENG Z et al. Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells[J]. Advanced Materials, 2109078(2022).

    [16] WANG W, WANG X, CHEN G et al. Over 6% certified Sb2(S,Se)3 solar cells fabricated via in situ hydrothermal growth and postselenization[J]. Advanced Electronic Materials, 1800683(2019).

    [17] ABDEL-SHAKOUR M, MAUSUISHI K, CHOWDHURY T H et al. Regulated oxidation and moisture permeation via sulfinic acid based additive enables highly efficient and stable tin-based perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 112241(2023).

    [18] XIAO K, LIN R, HAN Q et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant[J]. Nature Energy, 870(2020).

    [19] LI H, LIN L, YAO L et al. High-efficiency Sb2(S,Se)3 solar cells with new hole transport layer-free back architecture via 2D titanium- carbide MXene[J]. Advanced Functional Materials, 2110335(2022).

    [21] CHEN C, LI K, CHEN S et al. Efficiency improvement of Sb2Se3 solar cells via grain boundary inversion[J]. ACS Energy Letters, 2335(2018).

    [22] WU F, ZHAO Y, YAO L et al. Manipulating back contact enables over 8%-efficient carbon-based Sb2(S,Se)3 solar cells[J]. Chemical Engineering Journal, 135872(2022).

    [23] CHEN X, CHE B, ZHAO Y et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells[J]. Advanced Energy Materials, 2300391(2023).

    [24] MAO X, BIAN M, WANG C et al. Ultrathin SnO2 buffer layer aids in interface and band engineering for Sb2(S,Se)3 solar cells with over 8% efficiency[J]. ACS Applied Energy Materials, 3022(2022).

    [25] WANG Y, JIAO Y, GUO J et al. Optimization of interfacial engineering of perovskite solar cells[J]. Journal of Inorganic Materials, 1323(2023).

    [26] XIA Z, ZHANG W, CHEN C et al. Improving performance of Cs2AgBiBr6 solar cell through constructing gradient energy level with deep-level hole transport material[J]. Rare Metals, 3004(2023).

    [27] WU J, LV Y, WANG J et al. Performance improvement of Sb2Se3 thin-film solar cells through ultraviolet ozone treatment[J]. Rare Metals, 2671(2022).

    [28] CHEN T, LUO Y, ZHU L et al. Organic-inorganic co-addition to improve mechanical bending and environmental stability of flexible perovskite solar cells[J]. Journal of Inorganic Materials, 477(2024).

    [29] SHIEL H, HOBSON T, HUTTER O et al. Band alignment of Sb2O3 and Sb2Se3[J]. Journal of Applied Physics, 235301(2021).

    [30] ZHANG S, LU Y, LIN B et al. PVDF-HFP additive for visible- light-semitransparent perovskite films yielding enhanced photovoltaic performance[J]. Solar Energy Materials and Solar Cells, 178(2017).

    [31] WAGEH S, Al-GHAMDI A A, ZHAO L. Insights into mechanism of CsPbBr3 nanocrystal interfacial modifier in perovskite solar cells[J]. Acta Physico Chimica Sinica, 2111009(2022).

    [32] ZHANG S, DONG G, LIN B et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells[J]. Journal of Power Sources, 52(2015).

    [33] ZHAO J, LI X, LIN J et al. Unveiling the influence of absorber thickness on efficient Sb2(S, Se)3 solar cells through controlled chemical bath deposition[J]. Surfaces and Interfaces, 103411(2023).

    [34] LIU J, CAO M, FENG Z et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3solar cells[J]. Journal of Alloys and Compounds, 165885(2022).

    [35] GUO H, JIA X, LIU J et al. Classification of lattice defects and the microscopic origin of p-type conductivity of Sb2Se3 solar cell absorber with varying Al2O3-layer thicknesses[J]. Physica B: Condensed Matter, 414394(2023).

    [36] ZHANG S, HU Z, ZHANG J et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability[J]. Journal of Power Sources, 226987(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiaomeng NI, Fangxian XU, Jingjing LIU, Shuai ZHANG, Huafei GUO, Ningyi YUAN. Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid [J]. Journal of Inorganic Materials, 2025, 40(4): 372

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Shuai ZHANG (shuaizhang@cczu.edu.cn), Huafei GUO (guohuafei@cczu.edu.cn)

    DOI:10.15541/jim20240319

    Topics