Chinese Journal of Pharmaceuticals, Volume. 56, Issue 7, 837(2025)

Application Advance of Microfluidic Technology in Micro/Nanoparticle-based Drug Delivery Systems

FU Qinghui, LIU Jie, LI Qin, YANG Yani, and HE Jun*
Author Affiliations
  • National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203
  • show less
    References(66)

    [1] [1] CAVANIOL C, CESAR W, DESCROIX S,et al. Flowmetering for microfluidics [J].Lab Chip, 2022,22(19): 3603-3617.

    [2] [2] LI L, LEI T, XING C C,et al. Advances in microfluidic chips targeting toxic aggregation proteins for neurodegenerative diseases [J].Int J Biol Macromol, 2024,256(Pt 2): 128308.

    [3] [3] KIM H, YONEKURA Y, YOSHIDA J I. A catalyst-free amination of functional organolithium reagents by flow chemistry [J].Angew Chem Int Ed Engl, 2018,57(15): 4063-4066.

    [4] [4] FAN R R, WU J, DUAN S W,et al. Droplet-based microfluidics for drug delivery applications [J].Int J Pharm, 2024,663: 124551.

    [5] [5] MEHRAJI S, DEVOE D L. Microfluidic synthesis of lipidbased nanoparticles for drug delivery: recent advances and opportunities [J].Lab Chip, 2024,24(5): 1154-1174.

    [6] [6] LI X B, SONG Y Q, CHEN X Z,et al. Single-cell microfluidics enabled dynamic evaluation of drug combinations on antibiotic resistance bacteria [J].Talanta, 2023,265: 124814.

    [7] [7] SZEWCZYK K, JIANG L N, KHAWAJA H,et al. Microfluidic applications in prostate cancer research [J].Micromachines(Basel), 2024,15(10): 11954.

    [8] [8] KULKARNI M B, GOEL S. Microfluidic devices for synthesizing nanomaterials—a review [J].Nano Express, 2020,1(3): 032004.

    [9] [9] MARTINS J P, TORRIERI G, SANTOS H A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems [J].Expert Opin Drug Deliv, 2018,15(5): 469-479.

    [10] [10] CAPRETTO L, CHENG W, HILL M,et al. Micromixing within microfluidic devices [J].Top Curr Chem, 2011,304: 27-68.

    [11] [11] SHARP K V, ADRIAN R J. Transition from laminar to turbulent flow in liquid filled microtubes [J].Exp Fluids, 2004,36: 741-747.

    [12] [12] WEIGL B H, BARDELL R L, CABRERA C R. Lab-on-a-chip for drug development [J].Adv Drug Deliv Rev, 2003,55(3): 349-377.

    [13] [13] LIM J M, BERTRAND N, VALENCIA P M,et al. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towardsin vivostudy [J].Nanomedicine, 2014,10(2): 401-409.

    [14] [14] RHEE M, VALENCIA P M, RODRIGUEZ M I,et al. 3D hydrodynamic focusing for confined precipitation of nanoparticles within microfluidic channels [C]// Proceedings of the 14th international conference on Miniaturized Systems for Chemistry and Life Sciences. 14th International conference on Miniaturized Systems for Chemistry and Life Sciences. Groningen, 2010.

    [15] [15] STROOCK A D, DERTINGER S K, AJDARI A,et al. Chaotic mixer for microchannels [J].Science, 2002,295(5555): 647-651.

    [16] [16] PARK J E, KANG T G, JUNG S Y. The impact of thixotropic behavior on microfluidic mixing in a staggered-herringbone mixer [J].Phys Fluids, 2024,36(4): 042008.

    [17] [17] KWAK T J, NAM Y G, NAJERA M A,et al. Convex grooves in staggered herringbone mixer improve mixing efficiency of laminar flow in microchannel [J].PLoS one, 2016,11(11): e0166068.

    [18] [18] ALAM M M A, HIRANO T, HAYAMIZU Y,et al. Micro T-mixer with baffles: effect of baffle height and setting angle on mixing [J].Open J Fluid Dyn, 2023,13(4): 206-215.

    [19] [19] KIMURA N, MAEKI M, SATO Y,et al. Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery [J].ACS Omega, 2018,3(5): 5044-5051.

    [20] [20] KIMURA N, MAEKI M, SASAKI K,et al. Three-dimensional, symmetrically assembled microfluidic device for lipid nanoparticle production [J].RSC Adv, 2021,11(3): 1430-1439.

    [21] [21] NICULESCU A G, CHIRCOV C, BRC A C,et al. Nanomaterials synthesis through microfluidic methods: an updated overview [J].Nanomaterials(Basel), 2021,11(4): 864.

    [22] [22] ABBASI H, KOUCHAK M, MIRVEIS Z,et al. What we need to know about liposomes as drug nanocarriers: an updated review [J].Adv Pharm Bull, 2022,13(1): 7-23.

    [23] [23] HAS C, SUNTHAR P. A comprehensive review on recent preparation techniques of liposomes [J].J Liposome Res, 2020,30(4): 336-365.

    [24] [24] AKAR S, FARDINDOOST S, HOORFAR M. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation [J].Colloids Surf B Biointerfaces, 2024,238: 113926.

    [25] [25] MATSUURA-SAWADA Y, MAEKI M, UNO S,et al. Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device [J].Biomater Sci, 2023,11(7): 2419-2426.

    [26] [26] CHENG Z Y, LIAN Y M, KAMAL Z,et al. Nanocrystals technology for pharmaceutical science [J].Curr Pharm Des, 2018,24(21): 2497-2507.

    [27] [27] KULKARNI S A, MYERSON A S. Methods for nanocrystals preparation [M]// ROBERTS K, DOCHERTY R, TAMURA R. Engineering Crystallography: from Molecule to Crystal to Functional Form. Dordrecht: Springer, 2017: 275-287.

    [28] [28] WANG S, ZENG J, CHENG Z,et al. Precisely controlled preparation of uniform nanocrystalline cellulose via microfluidic technology [J].J Ind Eng Chem, 2022,106: 77-85.

    [29] [29] MA J P, LI C W. Rapid and continuous parametric screening for the synthesis of gold nanocrystals with different morphologies using a microfluidic device [J].Sens Actuators B, 2018,262: 236-244.

    [30] [30] ZHENG X J, ZHANG J, ZHANG L,et al. Controlled preparation of curcumin nanocrystals by detachable stainless steel microfluidic chip [J].Int J Pharm, 2024,663: 124574.

    [31] [31] AHMAD M, KHAN S, SHAH S M H,et al. Formulation and optimization of repaglinide nanoparticles using microfluidics for enhanced bioavailability and management of diabetes [J].Biomedicines, 2023,11(4): 1064.

    [32] [32] ZHENG G Y, WU W L, LIU Z M,et al. Quercetin nanocrystals prepared using a microfluidic chip with improved in vitro dissolution [J].Pharm Dev Technol, 2024,29(3): 143-152.

    [33] [33] HUANG J P, HUANG S W, LIU S J,et al. Preparation of tetrandrine nanocrystals by microfluidic method and itsin vitroandin vivoevaluation [J].AAPS PharmSciTech, 2023,25(1): 4.

    [34] [34] MAEKI M, UNO S, NIWA A,et al. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery [J].J Control Release, 2022,344: 80-96.

    [35] [35] SATO Y, OKABE N, NOTE Y,et al. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles [J].Acta Biomater, 2020,102: 341-350.

    [36] [36] HWANG Y H, SHEPHERD S J, KIM D,et al. Robust, scalable microfluidic manufacturing of rna-lipid nanoparticles using immobilized antifouling lubricant coating [J].ACS nano, 2025,19(1): 1090-1102.

    [37] [37] LIU J, LI R R, FU Q H,et al. Designed microchannel-based lipid nanoparticles encapsulated siRNA targeting gasdermin D for sepsis management via pulmonary delivery [J].Nano Today, 2025,61: 102653.

    [38] [38] KOUHJANI M, JAAFARI M R, KAMALI H,et al. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method [J].J Biomater Sci Polym Ed, 2024,35(3): 306-329.

    [39] [39] MANDAL B, BHATTACHARJEE H, MITTAL N,et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform [J].Nanomedicine, 2013,9(4): 474-491.

    [40] [40] WANG H Z, YUAN Y, QIN L,et al. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models [J].J Control Release, 2024,366: 746-760.

    [41] [41] XU B L, LI S S, SHI R,et al. Multifunctional mesoporous silica nanoparticles for biomedical applications [J].Signal Transduct Target Ther, 2023,8(1): 435.

    [42] [42] TENGJISI, HUI Y, FAN Y Y,et al. Influence of nanoparticle mechanical property on protein corona formation [J].J Colloid Interface Sci, 2022,606(Pt 2): 1737-1744.

    [43] [43] HAO N J, NIE Y, XU Z,et al. Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell [J].Chem Eng J, 2019,366: 433-438.

    [44] [44] NG T N, CHEN X Q, YEUNG K L. Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis [J].RSC Advances, 2015,5(18): 13331-13340.

    [45] [45] YANG R, CHEN L, WANG Y L,et al. Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy [J].Front Immunol, 2023,14: 1237361.

    [46] [46] KNAUER A, EISENHARDT A, KRISCHOK S,et al. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences [J].Nanoscale, 2014,6(10): 5230-5238.

    [47] [47] POPA M L, PREDA M D, NEACSU I A,et al. Traditional vs. microfluidic synthesis of ZnO nanoparticles [J].Int J Mol Sci, 2023,24(3): 1875.

    [48] [48] SUN J W, GONG J J, GONG L D,et al. High manganese content of lipid NanoMn (LNM) by microfluidic technology for enhancing anti-tumor immunity [J].Pharmaceutics, 2024,16(4): 556.

    [49] [49] PEKKARI A, SAY Z, SUSARREY-ARCE A,et al. Continuous microfluidic synthesis of Pd nanocubes and PdPt core-shell nanoparticles and their catalysis of NO2 reduction[J].ACS Appl Mater Interfaces, 2019,11(39): 36196-36204.

    [50] [50] CHEN W W, LI H, ZHANG X Y,et al. Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release [J].Lab Chip, 2024,24(19): 4623-4631.

    [51] [51] LONG Y H, JU X J, YANG S H,et al. Microfluidic fabrication of monodisperse hyaluronic acid microspheres with excellent biocompatibility and tunable physicochemical properties [J].Ind Eng Chem Res, 2024,63(15): 6632-6643.

    [52] [52] CAO X, LI Q W, LI X L,et al. Enhancing anticancer efficacy of formononetin microspheres via microfluidic fabrication [J].AAPS PharmSciTech, 2023,24(8): 241.

    [53] [53] XU A Q, SUN Y C, GUO M Y. Monodisperse polyaspartic acid derivative microspheres for potential tumor embolization therapy [J].Macromol Biosci, 2024,24(7): 2400047.

    [54] [54] NAIR K S, BAJAJ H. Advances in giant unilamellar vesicle preparation techniques and applications [J].Adv Colloid Interface Sci, 2023,318: 102935.

    [55] [55] ERNITS M, REINSALU O, YANDRAPALLI N,et al. Microfluidic production, stability and loading of synthetic giant unilamellar vesicles [J].Sci Rep, 2024,14(1): 14071.

    [56] [56] STAUFER O, ANTONA S, ZHANG D,et al. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery[J].Biomaterials, 2021,264: 120203.

    [57] [57] PAN T, TANG L, CHU R X,et al. Microfluidic-enabled assembly of multicomponent artificial organelle for synergistic tumor starvation therapy [J].ACS Appl Mater Interfaces, 2024,16(31): 40667-40681.

    [58] [58] MEHRAJI S, SAADATMAND M, ESKANDARI M. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications [J].Int J Biol Macromol, 2024,263(Pt 1): 129685.

    [59] [59] XUAN L Y, HOU Y Y, LIANG L,et al. Microgels for cell delivery in tissue engineering and regenerative medicine [J].Nanomicro Lett, 2024,16(1): 218.

    [60] [60] JIA F B, HUANG W P, YIN Y,et al. Stabilizing RNA nanovaccines with transformable hyaluronan dynamic hydrogel for durable cancer immunotherapy [J].Adv Funct Mater, 2023,33(3): 2204636.

    [61] [61] MIAO K S, ZHOU Y, HE X,et al. Microenvironmentresponsive bilayer hydrogel microspheres with gelatin-shell for osteoarthritis treatment [J].Int J Biol Macromol, 2024,261(Pt 2): 129862.

    [62] [62] SHEPHERD S J, HAN X, MUKALEL A J,et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines [J].Proc Natl Acad Sci U S A, 2023,120(33): e2303567120.

    [63] [63] SHEPHERD S J, WARZECHA C C, YADAVALI S,et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device [J].Nano Lett, 2021,21(13): 5671-5680.

    [64] [64] MA Z S, TONG H Y, LIN S J,et al. Scalable synthesis of lipid nanoparticles for nucleic acid drug delivery using an isometric channel-size enlarging strategy [J].Nano Res, 2024,17(4): 2899-2907.

    [65] [65] WEBB C, FORBES N, ROCES C B,et al. Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes [J].Int J Pharm, 2020,582: 119266.

    [66] [66] MAEKI M, OKADA Y, UNO S,et al. Mass production system for RNA-loaded lipid nanoparticles using piling up microfluidic devices [J].Appl Mater Today, 2023,31: 101754.

    Tools

    Get Citation

    Copy Citation Text

    FU Qinghui, LIU Jie, LI Qin, YANG Yani, HE Jun. Application Advance of Microfluidic Technology in Micro/Nanoparticle-based Drug Delivery Systems[J]. Chinese Journal of Pharmaceuticals, 2025, 56(7): 837

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 10, 2025

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: HE Jun (chinaynhe@163.com)

    DOI:10.16522/j.cnki.cjph.2025.07.001

    Topics