Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 3, 272(2025)

FCNN improving the speed of RCS calculation in the optimization design of electrically large size target

YANG Yuanpeng, WANG Wenzhuo, ZHENG Shengquan, and FANG Chonghua*
Author Affiliations
  • National Key Laboratory of Electromagnetic Effect and Security on Marine Equipment, China Ship Development and Design Center, Wuhan Hubei 430064, China
  • show less
    References(28)

    [1] [1] SHAN Tao, DANG Xunwang, LI Maokun, et al. Study on a 3D Possion's equation solver based on deep learning technique[C]//2018 IEEE International Conference on Computational Electromagnetics(ICCEM). Chengdu, China: IEEE, 2018: 1-3. doi: 10.1109/COMPEM.2018.8496657.

    [2] [2] GUO Rui, SHAN Tao, SONG Xiaoqian, et al. Physics embedded deep neural network for solving volume integral equation: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6135-6147. doi: 10.1109/TAP.2021.3070152.

    [3] [3] YAO Heming, JIANG Lijun. Enhanced PML based on the long short term memory network for the FDTD method[J]. IEEE Access, 2020(8): 21028-21035. doi: 10.1109/ACCESS.2020.2969569.

    [4] [4] LI Shuangyang, LAI Shengjian. LIU Jinhao, et al. A MLP based FDTD method[J]. Journal of Computer and Communications, 2021, 8(12): 279-284. doi: 10.4236/jcc.2020.812022.

    [5] [5] CHEN Yanjun, CHENG Zhigang, WU Jie, et al. Characteristic analysis for dual-induction logging response in highly deviated wells and horizontal wells[C]//2016 Progress in Electromagnetic Research Symposium(PIERS). Shanghai, China: IEEE, 2016: 3359-3363. doi: 10.1109/PIERS.2016.7735316.

    [6] [6] CHEN Yanjun, PAN Quan, WANG Quan, et al. A method of multi-target tracking based on information utility in wireless sensor networks[J]. Computer Simulation, 2009, 26(7): 149-153.

    [7] [7] CHEN Yanjun, PAN Quan, YE Gangqiang, et al. Ant colony genetic routing algorithm for wireless sensor networks[J]. Journal of Hunan University Natural Sciences, 2009, 36(7): 46-51.

    [8] [8] CHEN Yanjun, PAN Qinyi, LIANG Yan, et al. Decentralized collaborative self-organization algorithm based on information content[J]. Control Theory and Applications, 2011, 28(10): 1391-1398.

    [9] [9] CHEN Yanjun, PAN Quan, LIANG Yan, et al. Adaptively dynamic collaborative self-organization algorithm based on IDSQ[J]. Control and Decision, 2011, 26(3): 393-396, 401.

    [10] [10] CHEN Yanjun, LIANG Xinhua, PAN Quan, et al. A particle filter track-before-detect algorithm based on two-stage measurement update[J]. Journal of Sensors and Actuators, 2015, 28(1): 115-120. doi: 10.3969/j.issn.1004-1699.2015.01.020.

    [11] [11] CHEN Yanjun. PAN Quan, WANG Zheng. Performance optimization and simulation based on target tracking in wireless sensor networks[J]. Journal of Sensors and Actuators, 2015, 28(4): 544-550. doi: 10.3969/j.issn.1004-1699.2015.04.016.

    [12] [12] ZHANG Xu, WAN Jianxin, LIU Zhouyang, et al. RCS optimization of surface geometry with physics inspired neural networks[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2022(7): 126-134. doi: 10.1109/JMMCT.2022.3181606.

    [13] [13] WEI Zhun, CHEN Xudong. Physics-inspired convolutional neural network for solving full-wave inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 6138-6148. doi: 10.1109/TAP.2019.2922779.

    [15] [15] MASSA A, MARCANTONIO D, CHEN X D, et al. DNNs as applied to electromagnetics, antennas, and propagation—a review[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(11): 2225-2229. doi: 10.1109/LAWP.2019.2916369.

    [16] [16] IHF-Boat. A measurement standard for polarimetric RCS imaging[S/OL]. (2013-07-09). https://www.ihf.rwth-aachen. de/en/research/research-topics/further-research-topics/rcs-measurements/ihf-boat.

    [17] [17] XU Kuiwen, WU Liang, YE Xiuzhu, et al. Deep learning-based inversion methods for solving inverse scattering problems with phaseless data[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7457-7470. doi: 10.1109/TAP.2020.2998171.

    [18] [18] HUGHES T W, WILLIAMSON I A D, MINKOV M, et al. Wave physics as an analog recurrent neural network[J]. Science Advances, 2019, 5(12): eaay6946. doi: 10.1126/sciadv.aay6946.

    [19] [19] WANG Yuanchao, LI Mingtao, PAN Zhichen, et al. Pulsar candidate classification with deep convolutional neural networks[J]. Research in Astronomy and Astrophysics, 2019, 19(9): 119-128. doi: 10.1088/1674-4527/19/9/133.

    [20] [20] ALEJANDRO P, ALVARO S, IVAN G, et al. Fast computation by MLFMM-FFT with NURBS in large volumetric dielectric structures[J]. Electronics, 2021, 10(13): 1560. doi: 10.3390/electronics10131560.

    [21] [21] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, Korea: IEEE, 2019: 6022-6031. doi: 10.1109/ICCV.2019.00612.

    [22] [22] CHOE J, LEE S, SHIM H. Attention-based dropout layer for weakly supervised single object localization and semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4256-4271. doi: 10.1109/TPAMI.2020.2999099.

    [23] [23] CHOE J, SHIM H. Attention-based dropout layer for weakly supervised object localization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 2214-2223.

    [24] [24] DONG Xuanyi, ZHENG Liang, MA Fan, et al. Few-example object detection with model communication[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1641-1654. doi: 10.1109/TPAMI.2018.2844853.

    [25] [25] HAN Sheng, YANG Fan, JIANG Hui, et al. Statistical analysis of infrared thermogram for CNN-based electrical equipment identification methods[J]. Applied Artificial Intelligence, 2022, 36(1): 2004348. doi: 10.1080/08839514.2021.2004348.

    [26] [26] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7794-7803. doi: 10.1109/CVPR.2018.00813.

    [27] [27] YUAN Deran, XIE Xiaochun, GAO Gao, et al. Advances in hyperspectral image classification with a bottleneck attention mechanism based on 3D-FCNN model and imaging spectrometer sensor[J]. Journal of Sensors, 2022(1): 7587157-1-16. doi: 10.1155/2022/7587157.

    [29] [29] MOHAMMED A A H, CHEN J. Retracted: cleanup sketched drawings: deep learning-based model[J]. Applied Bionics and Biomechanics, 2022(1): 2238077. doi: 10.1155/2023/9891841.

    [30] [30] YANG Yuanpeng, SHI Xinyang, WANG Qingyao, et al. Enhancement of electromagnetic scattering computation acceleration using LSTM neural networks[J]. Electronics, 2023, 12(18): 3900. doi: 10.3390/electronics12183900.

    Tools

    Get Citation

    Copy Citation Text

    YANG Yuanpeng, WANG Wenzhuo, ZHENG Shengquan, FANG Chonghua. FCNN improving the speed of RCS calculation in the optimization design of electrically large size target[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(3): 272

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 17, 2023

    Accepted: Jun. 5, 2025

    Published Online: Jun. 5, 2025

    The Author Email: FANG Chonghua (Scienc7research@skiff.com)

    DOI:10.11805/tkyda2023265

    Topics