Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2228005(2022)

Target Detection Method for Remote Sensing Images Based on Sparse Mask Transformer

Xulun Liu1, Shiping Ma1, Linyuan He1,2、*, Chen Wang1, Xu He1, and Zhe Chen3
Author Affiliations
  • 1School of Aeronautical Engineering, Air Force Engineering University, Xi'an 710038, Shaanxi, China
  • 2Unbanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
  • 3School of Cyberspace Security, Xi'an University of Posts & Telecommunications, Xi'an 710121, Shaanxi, China
  • show less
    Figures & Tables(8)
    Structure diagram of the proposed network
    Schematic of attention block. MSA is multi-head attention, SI-MSA is sparse-interpolation multi-head attention.(a) Standard attention block; (b) sparse-interpolation attention block
    Sparse-interlation multi-head self-attention
    Deterministic sampling and stochastic sampling. (a) Deterministic sampling; (b) stochastic sampling
    Visualization of parts of the detection results
    • Table 1. Comparison of detection accuracy of different methods in DOTA dataset

      View table

      Table 1. Comparison of detection accuracy of different methods in DOTA dataset

      MethodAP /%mAP /%
      PLBDBRGTFSVLVSHTCBCSTSBFRAHASPHC
      R2CNN1980.9465.6735.3467.4459.9250.9155.8190.6766.9272.3955.0652.2355.1453.3548.2260.67
      RRPN2088.5271.2031.6659.3051.8556.1957.2590.8172.8467.3856.6952.8453.0851.9453.5861.01
      RT2188.6478.5243.4475.9268.8173.6883.5990.7477.2781.4658.3953.5462.8358.9347.6469.56
      CAD-Net287.8082.4049.4073.5071.1064.5076.6090.9079.2073.3048.4060.9062.0067.0062.2069.90
      SCRDet2289.9880.6552.0968.3668.3660.3272.4190.8587.9486.8665.0266.6866.2568.2465.2172.61
      GV389.6485.0052.2677.3473.0173.1486.8290.7479.0286.8159.5570.9172.9470.8657.3275.02
      BBAVectors2388.6384.0652.1369.5678.2680.4088.0690.8787.2386.3956.1165.5267.1072.0863.9675.36
      Proposed method89.1484.4054.7376.8079.2182.0189.2391.3486.0588.5468.6569.9070.8374.2771.3778.43
    • Table 2. mAP value and detection speed of different detection methods on DOTA dataset

      View table

      Table 2. mAP value and detection speed of different detection methods on DOTA dataset

      ModelBackbonemAP /%Speed /(frame·s-1
      R2CNNVGG-1660.675.9
      RRPNVGG-1661.017.2
      RTR101-FPN69.567.8
      CAD-NetR101-FPN69.907.9
      SCRDetR101-FPN72.618.4
      GVR101-FPN75.0211.6
      BBAVectorsResNet-10175.3613.7
      Proposed methodResNet-10178.4312.5
    • Table 3. Ablation study

      View table

      Table 3. Ablation study

      BaselineMulti-scale inputSampling moduleInterpolation moduleEpochGFLOPsmAP /%
      5015265.33
      50015276.41
      50189067.18
      500189078.23
      5013877.86
      5014078.43
    Tools

    Get Citation

    Copy Citation Text

    Xulun Liu, Shiping Ma, Linyuan He, Chen Wang, Xu He, Zhe Chen. Target Detection Method for Remote Sensing Images Based on Sparse Mask Transformer[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 3, 2021

    Accepted: Oct. 13, 2021

    Published Online: Oct. 26, 2022

    The Author Email: Linyuan He (hal1983@163.com)

    DOI:10.3788/LOP202259.2228005

    Topics