Journal of Synthetic Crystals, Volume. 54, Issue 6, 997(2025)

Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method

Hao ZHAO, Bowen YU, Qi LI, Guangqing LI, Yiyuan LIU, Na LIN, Yang LI, Wenxiang MU, and Zhitai JIA*
Author Affiliations
  • The Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
  • show less
    Keywords

    Abstarct:The phenomenon of facile n-type doping and the challenges associated with p-type doping are frequently observed in wide-bandgap oxide semiconductors. LiGa5O8 is an innovative oxide semiconductor material which is theoretically amenable to bipolar doping. Remarkable properties are exhibited by LiGa5O8, positioning it as a promising candidate in the realm of oxide semiconductor optoelectronics, with the potential to advance the development of high-performance PN homojunctions and other bipolar devices. In this study, unintentionally doped high-quality single crystal LiGa5O8 thin films were synthesized by the mist-chemical vapor deposition (mist-CVD) method, and their quality, optical and electrical properties were meticulously measured and characterized. The experimental results indicate that the synthesized LiGa5O8 thin films exhibit excellent quality and crystallinity, with a thickness of 484 nm, small surface roughness (Rq=2.48 nm, Ra=1.73 nm), and an optical bandgap of 5.22 eV, with a chemical composition ratio of Li, Ga, and O approximately 1∶5∶8. The films are characterized by n-type conductivity, with conductivity diminishing as lithium content increases, while p-type conductivity is not observed. The photodetectors prepared using the obtained LiGa5O8 thin films demonstrate favorable I-V and I-t characteristics under 254 nm illumination. Theoretical calculations of the band structure suggest that achieving p-type doping in LiGa5O8 is more challenging than n-type doping. By analyzing the intrinsic defects GaLi and LiGa in the oxygen-rich conditions of LiGa5O8, it is found that the formation energy of GaLi defects is exceptionally low, introducing shallow donor energy levels, thus resulting in the n-type conductive characteristics of the films; simultaneously, as the proportion of Li increases, GaLi defects compensate for Li acceptors, leading to negligible conductivity in the films. Future endeavors will encompass doping with elements such as Si, Ge and P, with the objective of obtaining higher carrier concentration LiGa5O8 crystal thin film materials.

    引言

    宽禁带氧化物半导体材料高耐压、高巴利加优值的特性,适用于制备各种大功率器件1。宽禁带氧化物半导体材料由于有很高电子亲合能,且能级结构中导带最小值较小,靠近费米能级,有利于本征施主缺陷的形成,容易实现n型掺杂,可以实现具有较为理想电导率和电子迁移率的n型掺杂23。但由于无活化能小的受主,较低的空穴迁移率,以及能级结构中价带最大值较小,远离费米能级,本征施主缺陷形成等原因,大部分宽禁带氧化物半导体材料实现具有高迁移率的p型掺杂十分困难45。为缓解此不足,可以通过n型宽禁带氧化物材料与p型氧化物材料结合,从而形成异质PN结,但器件迁移率与功率优值有限,且器件功率损耗较高,并不能完全发挥材料高击穿电压和高功率优值的优点67。因此从根本来说需要寻找能够有效进行双极掺杂的新型宽禁带氧化物半导体材料,实现同质PN结,充分发挥宽禁带半导体材料的优异性能。当前几乎所有宽禁带材料的发展都受到诸如晶圆尺寸有限和掺杂困难等的阻碍8,其中,研究人员在氧化镓p型掺杂方面做了许多尝试,但想要获得稳定高效的p型材料仍非常困难912

    LiGa5O8是一种新型宽禁带半导体材料,理论禁带宽度高达5.7 eV,其光电性能能够与氧化镓相媲美13。LiGa5O8是尖晶石类化合物,Li只占据八面体配位,Ga占据四面体和八面体配位14。其能带结构在价带顶处略有起伏,有望实现p型掺杂。卓越的性能使LiGa5O8成为氧化物半导体中在光电领域很有前途的材料,同时有望制备高性能PN同质结和其他双极性的大功率器件15

    在LiGa5O8的计算和实验方面,2021年,Wang等16通过热蒸发法获得了LiGa5O8纳米结构,并研究其光电性能,但结果并不理想。2023年,Zhang等17通过雾化学气相沉积(mist-chemical vapor deposition, mist-CVD)法在蓝宝石和氮化镓衬底上生长了LiGa5O8薄膜,并测得了其贫锂和富锂时的p型电导率。2024年,Lambrecht18通过理论计算得到LiGa5O8的能带结构和光学性能,并预测了硅n型掺杂的有效性。同时,Lambrecht等19通过理论计算得到LiGa5O8中各种本征缺陷及其复合物的形成能及转变能级,并质疑了p型导电性。同年,Lyons20通过理论计算得到本征受体缺陷和杂质掺杂都不会实现p型电导。此外,LiGa5O8∶Cr3+、LiGa5O8∶Fe3+等由于掺杂后的发光特性,在荧光、红外发光、X射线等方面有所应用2123

    在本研究中,本团队采用mist-CVD法在c面蓝宝石衬底上生长非故意掺杂的n型LiGa5O8薄膜。通过改变生长参数(温度、时间、浓度、气体流速)得到稳定的LiGa5O8薄膜。通过SEM、AFM、XRD、紫外光谱、红外光谱、XPS、霍尔效应等手段,对薄膜的质量、光学、元素、电学性能进行表征。制备富Li的LiGa5O8光电探测器并表征其光电性能。通过理论计算得到缺陷的形成能和转变能级,结合理论与实验对薄膜的电学性能进行解释。

    实验

    薄膜生长与表征

    使用垂直式mist-CVD设备在c面蓝宝石衬底上生长LiGa5O8外延薄膜。Ga的前驱体为乙酰丙酮镓(C15H21GaO6,纯度99.9%,Sigma Aldrich),Li的前驱体为乙酰乙酸锂(C4H5LiO3,纯度99.9%,Sigma Aldrich),Li、Ga原子比n(Li)∶n(Ga)=1∶5。所用生长条件为:温度860 ℃,衬底和漏斗距离20 mm,生长时间2 h,氩气流速4 600 sccm(标准毫升每分钟),氧气流速1 000 sccm,将前驱体溶液充分混合后以合适速率雾化在衬底上外延生长薄膜。所用生长条件是不同条件下最稳定的。之后又采用上述相同的实验条件,生长n(Li)∶n(Ga)=0.21的薄膜,用于光电探测器的制备和性能表征,其Ti/Au叉指电极通过电子束蒸镀、光刻、腐蚀工艺制备。

    对外延生长的LiGa5O8薄膜进行XRD、SEM、AFM、紫外光谱、红外光谱、XPS、霍尔效应、I-V曲线等测试表征。XRD分析使用日本RIGAKU公司的Smartlab型X射线衍射仪,靶材为Cu,测试2θ范围为10°~90°。SEM表征使用美国FEI公司的Nova NanoSEM 450型电子显微镜。AFM表征使用布鲁克BioScope Resolve型仪器。紫外光谱测试使用美国20/30PV Pro型紫外可见近红外显微分光光度计,波长范围为200~1 000 nm。红外光谱使用Thermo公司Nicolet iS50型傅里叶变换红外光谱仪,波长范围为1 250~8 000 nm。XPS测试使用英国岛津公司Axis Supra型仪器,测试元素为Li、Ga、O。霍尔效应测试使用美国Quantum Design公司Dynacool-9型综合物性测量系统。I-VI-t曲线测试使用美国吉时利仪器公司keithley 4200SCS型半导体测试仪,电压分别为±15和10 V。

    理论计算解释电学性能

    理论计算富氧条件下GaLi和LiGa本征缺陷的能带结构、形成能和转变能级。本文基于密度泛函理论(DFT)的计算均基于VASP软件包24。LiGa5O8的晶格参数为a=b=c=8.203 Å14。构建LiGa5O8 2×1×2的超胞结构,共224个原子,用于计算缺陷形成能及其电子性质。使用PBE-GW方法计算电子自能对能带结构的影响2526

    缺陷形成能的计算公式为27

    Efq=0)=Etotal(X)-Ebulk(X)+μlose-μadd
    Efq=-2/+2)=Etotal(X)-Ebulk(X)+μlose-μadd+qEf+EVBM)+Ecorr

    式中:EtotalEbulk分别为有缺陷和无缺陷时的晶格总能量;μloseμadd分别为有缺陷时失去和得到原子的总化学势,对应的μGaμLi为晶格中Ga和Li的化学势,μO为O2中氧原子的化学势(富O条件下);Ef为费米能级,EVBM为无缺陷时价带顶能量;EcorrV,为c方向最远离缺陷平面的平均电势。

    结果与讨论

    薄膜质量

    图1 LiGa5O8 的XRD图谱中可以看出只存在α-Al2O3和LiGa5O8的峰,并无其他杂相存在。与LiGa5O8的标准衍射pdf卡片(ICSD file 076-0199)对比可得,LiGa5O8的峰位于18.67°、37.90°、58.30°、81.04°,分别对应LiGa5O8 (111)、(222)、(333)、(444)面,主峰为(222)面的峰。Al2O3单峰为41.68°,对应(0006)面。LiGa5O8薄膜的半峰全宽很小,说明薄膜结晶度较高,晶粒尺寸较大,与LiGa5O8大的晶格常数(a=b=c=8.203 Å)相符合。由Scherrer公式D=/(β cos θ)可得,晶粒尺寸D约为68.03 nm。

    XRD pattern of the LiGa5O8 thin film grown on c-Al2O3 substrate

    Figure 1.XRD pattern of the LiGa5O8 thin film grown on c-Al2O3 substrate

    通过SEM和AFM表征LiGa5O8薄膜的表面形貌和粗糙度。SEM和AFM照片显示,在较高的放大倍数下,仍能观察到薄膜表面光滑度较高。图2(a)中EDS无法测试Li元素,因其电离能非常低。EDS测得n(Ga)∶n(O)=38.99∶61.01=0.639,与Ga、O元素比5∶8=0.625相近。通过SEM截面照片(见图2(b))测得薄膜厚度为(484.1±10) nm。通过AFM照片(见图2(c)、(d))测得薄膜粗糙度均方根偏差Rq=2.48 nm,平均偏差Ra=1.73 nm。进一步说明生长的薄膜组分为纯的LiGa5O8,且表面光滑,结晶质量较高。

    SEM and AFM images of the LiGa5O8 thin film

    Figure 2.SEM and AFM images of the LiGa5O8 thin film

    光学性能

    本文测试了LiGa5O8薄膜的紫外和红外透过光谱,光谱显示LiGa5O8薄膜在非常大的波长范围(280~5 500 nm)内透过率高达80%。通过紫外透过率(见图3(a))得到薄膜的紫外截止波长约为235 nm,较Ga2O3的更小。通过紫外透过率计算得到吸光度(Abs),进一步在最大斜率处作(αhν2对于的切线,如图3(b)所示,由Tauc plot法(αhν1/n=A-Eg)得到薄膜的光学直接带隙Eg约为5.22 eV。载流子在红外波长范围内会引起光的吸收,图3(c)显示薄膜在1 200~5 500 nm红外范围内透过率较为稳定,并无明显的载流子吸收,表明薄膜载流子浓度可能较低,导电性较差。

    Ultraviolet and infrared spectra of the LiGa5O8 thin film. (a) Ultraviolet transmittance spectrum; (b) ultraviolet Tauc plot; (c) infrared transmittance spectrum

    Figure 3.Ultraviolet and infrared spectra of the LiGa5O8 thin film. (a) Ultraviolet transmittance spectrum; (b) ultraviolet Tauc plot; (c) infrared transmittance spectrum

    元素表征

    图4为LiGa5O8薄膜的XPS。从图4(a)全谱中可以观测到Ge、Li、O的特征峰。图4(b)为O1s的XPS,可分为530.6、532.3、533.3 eV三个峰,分别对应O 1s、VO和吸附O。图4(c)为Li 1s的XPS,由于Li元素结合能很小,数据起伏较大,但仍可分为56.7、57.5、58.4 eV三个峰,分别对应Li 1s、Li—O和吸附Li。图4(d)为Ga 3d的XPS,20.5、24.1 eV处两个峰分别对应Ga 3d和O 2s。图4(e)、(f)为XPS测n(Li)∶n(Ga)=0.21和0.20的价带谱,切线与基线的交点对应价带到费米能级的距离,分别为2.66、3.29 eV,结合测得的光学带隙为5.22 eV,可知二者可能分别为导电性较差的薄膜、n型导电半导体薄膜。利用图4(b)~(d)峰面积的比值计算出Li、Ga、O元素比为7.0∶34.9∶58.1,约为1∶5∶8,其中O含量较高,符合富O环境,且氧空位含量较少。

    XPS of the LiGa5O8 thin film

    Figure 4.XPS of the LiGa5O8 thin film

    电学性能

    通过霍尔效应测得当n(Li)∶n(Ga)=0.20时LiGa5O8薄膜为n型半导体,电子浓度为1016 cm-3,霍尔迁移率约为0.33 cm2·V-1·s-1。当n(Li)∶n(Ga)=0.21时为几乎绝缘的n型半导体,由于薄膜电阻过大(约1011 Ω),无法准确得到载流子浓度和迁移率。测试结果与XPS价带谱得到的结果相符合,未能得到p型LiGa5O8薄膜。

    利用n(Li)∶n(Ga)=0.21导电性差的LiGa5O8薄膜制备了光电探测器,如图5(a)所示,在薄膜上镀Ti/Au叉指电极,测试其I-VI-t曲线。图5(b)为波长254 nm光照下的光暗电流的I-V曲线,254 nm光照下的光暗电流比约为100。图5(c)为10 V电压下的I-t曲线,测得上升时间为0.016 s。计算得到比探测率D*为3.98×109 Jones。

    Photodetector performance of the LiGa5O8 thin film (n(Li)∶n(Ga) = 0.21). (a) Structure of the photodetector device; (b) I-V curves of dark and photocurrent under 254 nm illumination; (c) I-t curve of photoresponse time at a 10 V bias

    Figure 5.Photodetector performance of the LiGa5O8 thin film (n(Li)∶n(Ga) = 0.21). (a) Structure of the photodetector device; (b) I-V curves of dark and photocurrent under 254 nm illumination; (c) I-t curve of photoresponse time at a 10 V bias

    理论计算与分析

    通过计算LiGa5O8的能带结构和GaLi、LiGa缺陷的形成能和转变能级,对LiGa5O8薄膜的n型导电性进行解释。图6(a)为非掺LiGa5O8的能带结构,实线为PBE计算,点线为GW计算。PBE和GW计算的能带趋势一致,带隙分别为2.85和5.47 eV。其价带平缓、空穴质量较大,因此p型掺杂较难实现。图6(b)为具有Ga取代Li(GaLi)缺陷的LiGa5O8的能带结构,结果显示其费米能级完全穿过导带,引入较浅的缺陷能级,较容易实现n型掺杂。图6(c)和(d)为具有Li取代8配位Ga和4配位Ga(LiGa)缺陷的LiGa5O8的能带结构,其费米能级部分穿过价带,可能实现p型掺杂但十分困难。

    Calculated band structures of intrinsic Li and Ga substitution defects in LiGa5O8. (a) Band structure of a perfect LiGa5O8 lattice, solid line represents PBE calculation, dotted line represents GW calculation; (b) band structure with GaLi defects, n(Li)∶n(Ga)=0.185; (c) band structure with LiGa(8) defects, where Li substitutes 8-coordinated Ga, n(Li)∶n(Ga)=0.215;(d) band structure with LiGa(4) defects, where Li substitutes 4-coordinated Ga, n(Li)∶n(Ga)=0.215

    Figure 6.Calculated band structures of intrinsic Li and Ga substitution defects in LiGa5O8. (a) Band structure of a perfect LiGa5O8 lattice, solid line represents PBE calculation, dotted line represents GW calculation; (b) band structure with GaLi defects, n(Li)∶n(Ga)=0.185; (c) band structure with LiGa(8) defects, where Li substitutes 8-coordinated Ga, n(Li)∶n(Ga)=0.215;(d) band structure with LiGa(4) defects, where Li substitutes 4-coordinated Ga, n(Li)∶n(Ga)=0.215

    进一步通过公式(1)和(2)计算缺陷形成能及其转变能级,如图7所示,GaLi、LiGa的缺陷形成能分别为5.13、5.75 eV,GaLi(+2, 0)、LiGa(0,-2)的转变能级分别为5.23、3.17 eV。值得注意的是,本征LiGa5O8中GaLi缺陷的形成能仅为0.14 eV,而LiGa缺陷的形成能则高达5.75 eV。因此,本团队在富氧环境下生长的LiGa5O8薄膜在n(Li)∶n(Ga)=0.20时由于GaLi缺陷形成能很低、极易形成,表现为n型半导体;在n(Li)∶n(Ga)=0.21时Li受体被大量GaLi缺陷补偿,使薄膜几乎不导电。

    Formation energies of GaLi and LiGa defects in LiGa5O8 (solid line represents the formation energy of GaLi defects, dotted line represents the formation energy of LiGa defects)

    Figure 7.Formation energies of GaLi and LiGa defects in LiGa5O8 (solid line represents the formation energy of GaLi defects, dotted line represents the formation energy of LiGa defects)

    结论

    本文利用mist-CVD在富氧条件下生长LiGa5O8薄膜,测试发现薄膜结晶质量较好,并具有5.22 eV的大光学带隙,在紫外-可见-红外大范围内透过率较高。当薄膜中Li、Ga、O元素含量比约为1∶5∶8时,薄膜具有n型导电;而当增加Li的比例时薄膜几乎不具有导电性,且制备的光电探测器在波长254 nm光照下具有良好的I-VI-t特性。结合理论计算表明:未掺杂的LiGa5O8薄膜由于GaLi缺陷形成能非常低,薄膜具有n型导电性;同时当Li的比例略微增加时Li受体被大量GaLi缺陷补偿,薄膜不会出现p型导电且几乎不导电。本工作中未能得到p型LiGa5O8薄膜,但得到非故意掺杂的n型LiGa5O8薄膜。后续本团队将在此基础上对LiGa5O8薄膜进一步进行n型和p型掺杂尝试,如Si、Ge、P等掺杂,以期获得载流子浓度更高的LiGa5O8单晶薄膜材料。

    [1] MILLAN J, GODIGNON P, PERPINA X et al. A survey of wide bandgap power semiconductor devices. IEEE Transactions on Power Electronics, 29, 2155-2163(2014).

    [2] ZHANG J Y, WILLIS J, YANG Z N et al. Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide. Cell Reports Physical Science, 3, 100801(2022).

    [3] HOSAKA S, NISHINAKA H, OGAWA T. High conductivity of n-type β-Ga2O3 (010) thin films achieved through Si doping by mist chemical vapor deposition. AIP Advances, 14(2024).

    [4] VARLEY J B, JANOTTI A, FRANCHINI C et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Physical Review B, 85(2012).

    [5] GAKE T, KUMAGAI Y. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs. Physical Review Materials, 3(2019).

    [6] GREEN A J, CHABAK K D, BALDINI M et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Letters, 38, 790-793(2017).

    [7] LI W S, SARASWAT D, LONG Y et al. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes. Applied Physics Letters, 116, 192101(2020).

    [8] GEIS M W, WADE T C, WUORIO C H et al. Progress toward diamond power field-effect transistors. Physica Status Solidi (a), 215, 1870050(2018).

    [9] JIANG Z X, WU Z Y, MA C C et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Materials Today Physics, 14, 100226(2020).

    [10] WU Z Y, JIANG Z X, MA C C et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films. Materials Today Physics, 17, 100356(2021).

    [11] CHIKOIDZE E, TCHELIDZE T, SARTEL C et al. Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3. Materials Today Physics, 15, 100263(202).

    [12] ZHOU X, LI M, ZHANG J Z et al. High quality P-type Mg-doped β-Ga2O3-δ films for solar-blind photodetectors. IEEE Electron Device Letters, 43, 580-583(2022).

    [13] RADHA S K, RATNAPARKHE A, LAMBRECHT W R L. Quasiparticle self-consistent GW band structures and high-pressure phase transitions of LiGaO2 and NaGaO2. Physical Review B, 103(2021).

    [14] AAHMAN J, SVENSSON G, ALBERTSSON J. Structure of LiGa5O8. Physical Inorganic Chemistry, 27, 39003(1996).

    [15] LIU F, YAN W Z, CHUANG Y J et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Scientific Reports, 3, 1554(2013).

    [16] WANG Y, JIANG J L, SONG Z C et al. Structural characterization &, optical and electrical properties of LiGaO2 & LiGa5O8 micro-nanoparticles-based photodetectors. Journal of Alloys and Compounds, 887, 161438(2021).

    [17] ZHANG K T, VANGIPURAM V G T, HUANG H L et al. Discovery of a robust p-type ultrawide bandgap oxide semiconductor: LiGa5O8. Advanced Electronic Materials, 2300550(2023).

    [18] LAMBRECHT W R L. Spinel LiGa5O8 prospects as ultra-wideband-gap semiconductor: band structure, optical properties, and doping. Journal of Vacuum Science & Technology A, 42(2024).

    [19] DABSAMUT K, TAKAHASHI K, LAMBRECHT W R L. Native defects and their complexes in spinel LiGa5O8. Journal of Applied Physics, 135, 235707(2024).

    [20] LYONS J L. Deep polaronic acceptors in LiGa5O8. Journal of Applied Physics, 135, 165705(2024).

    [21] CHEN H M, SUN X L, WANG G D et al. LiGa5O8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Materials Horizons, 4, 1092-1101(2017).

    [22] HUANG W C, GONG X Y, CUI R R et al. Enhanced persistent luminescence of LiGa5O8∶Cr3+ near-infrared phosphors by codoping Sn4+. Journal of Materials Science: Materials in Electronics, 29, 10535-10541(2018).

    [23] LU X N, WANG Y F, YANG J et al. LiGa5O8∶Fe3+: a novel and super long near-infrared persistent material. Ceramics International, 50, 35359-35367(2024).

    [24] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996).

    [25] HEDIN L, LUNDQVIST S. Effects of electron-electron and electron-phonon interactions on the one-electron states of solids. Solid State Physics, 23, 1-181(1970).

    [26] HEDIN L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Physical Review, 139, A796-A823(1965).

    [27] FREYSOLDT C, GRABOWSKI B, HICKEL T et al. First-principles calculations for point defects in solids. Reviews of Modern Physics, 86, 253-305(2014).

    Tools

    Get Citation

    Copy Citation Text

    Hao ZHAO, Bowen YU, Qi LI, Guangqing LI, Yiyuan LIU, Na LIN, Yang LI, Wenxiang MU, Zhitai JIA. Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 997

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 6, 2025

    Accepted: --

    Published Online: Jul. 8, 2025

    The Author Email: Zhitai JIA (z.jia@sdu.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2025.0002

    Topics