Acta Optica Sinica, Volume. 43, Issue 17, 1712001(2023)
Simultaneous Temperature and Velocity Measurement Technique Based on Hydroxyl Tagging
[1] Liu J R, Hu Z Y, Ye J F et al. Development of laser-based quantitative diagnostic techniques for turbulent combustion flow field of jet-engines[J]. Journal of Propulsion Technology, 43, 210216(2022).
[2] Yang W B, Qi X H, Li M et al. Outlet temperature measurements of scramjet combustor using coherent anti-stokes Raman scattering[J]. Journal of Propulsion Technology, 43, 210190(2022).
[3] Satija A, Lucht R P. Development of a combined pure rotational and vibrational coherent anti-Stokes Raman scattering system[J]. Optics Letters, 38, 1340-1342(2013).
[4] Kan R F, Xia H H, Xu Z Y et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911005(2018).
[5] Xu Y Y, Yu J, Mo Z Q et al. Advances in cavity ring-down absorption spectroscopy research and typical applications[J]. Laser & Optoelectronics Progress, 58, 1900001(2021).
[6] Dieter K, Koschnick K, Lill J et al. Development of a Raman spectrometer for the characterization of gaseous hydrocarbons at high temperatures[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107978(2022).
[7] Zhang Z R, Li G H, Ye J F et al. The online measuring of the major species in aeroengine combustor using Raman scattering method[J]. Modern Applied Physics, 7, 040303(2016).
[8] Liu H, Chen F, Li X J et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 30, 28-42(2016).
[9] Li F B, Zhang H B, Bai B F. A review of molecular tagging measurement technique[J]. Measurement, 171, 108790(2021).
[10] Zhu J J, Wan M G, Wu G et al. Research progress of laser-induced fluorescence technology in combustion diagnostics[J]. Chinese Journal of Lasers, 48, 0401005(2021).
[11] Jin C, Jiang L Q, Li F et al. Heat release rate and flame thickness of n-butane/air jet flame measured by planar laser-induced fluorescence technology[J]. Chinese Journal of Lasers, 49, 1304001(2022).
[12] Most D, Leipertz A. Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique[J]. Applied Optics, 40, 5379-5387(2001).
[13] Dogariu A, Dogariu L E, Smith M S et al. Velocity and temperature measurements in Mach 18 nitrogen flow at tunnel 9[C], 0020(2021).
[14] Zhang B, Xiao L H, Hou J Q et al. Simultaneous laser measurement of three-dimensional temperature and velocity fields in swirling flame[J]. Chinese Journal of Lasers, 48, 0304002(2021).
[15] Hu H, Koochesfahani M M. Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder[J]. Measurement Science and Technology, 17, 1269-1281(2006).
[16] Edwards M R, Dogariu A, Miles R B. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging[J]. AIAA Journal, 53, 2280-2288(2015).
[17] Zhou J N, Yang W B, Zhou Q A et al. Simultaneous 2D temperature and velocity measurement using a one-color-camera PLIF method combined with a physically constrained temperature tagging method[J]. Applied Optics, 61, 8204-8211(2022).
[18] Wehrmeyer J A, Ribarov L A, Oguss D A et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 38, 6912-6917(1999).
[19] Perkins A N, Ramsey M, Pitz R et al. Investigation of a bow shock in a shock tube flow facility using hydroxyl tagging velocimetry (HTV)[C], 1092(2011).
[20] Ye J F, Shi D Y, Song W Y et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 157, 276-281(2019).
[21] Jenkins T P, Pullen M, Pitz R W et al. Hydroxyl tagging velocimetry demonstration in an augmented spark igniter[C], 1167(2022).
[22] Webb A M, Athmanathan V, Fisher J et al. Megahertz-rate femtosecond laser activation and sensing of hydroxyl for velocimetry in a rotating detonation combustor exhaust[C], 2372(2022).
[23] Ye J F, Hu Z Y, Zhang Z R et al. Velocity measurement of gas flow field by hydroxyl tagging velocimetry[J]. Acta Optica Sinica, 29, 2191-2196(2009).
[24] Li G H, Zhang Z R, Ye J F et al. Planar laser-induced fluorescence thermometry in moderate-temperature flow using OH from photo-dissociation of water vapor[J]. Experiments in Fluids, 62, 1-7(2021).
[25] Li G H, Ye J F, Zhang Z R et al. Velocimetry and thermometry in intermediate temperature flow using planar laser-induced fluorescence of OH from photo-dissociation of H2O[J]. Experiments in Fluids, 61, 1-6(2020).
[26] Shao J, Ye J F, Hu Z Y et al. Method to improve signal extraction capability of hydroxyl tagging velocimetry in supersonic combustion flow field[J]. Acta Photonica Sinica, 48, 0912007(2019).
[27] Shao J, Wu J Z, Ye J F et al. Noise suppression method for hydroxyl tagging velocimetry based on generative adversarial networks[J]. AIP Advances, 12, 115202(2022).
[28] Shao J, Li J Y, Li G H et al. Temperature measurement based on fluorescence intensity in hydroxyl tagging velocimetry (HTV)[J]. AIP Advances, 10, 105326(2020).
Get Citation
Copy Citation Text
Jingfeng Ye, Guohua Li, Jun Shao, Zhenrong Zhang, Sheng Wang, Zhiyun Hu, Mengmeng Tao. Simultaneous Temperature and Velocity Measurement Technique Based on Hydroxyl Tagging[J]. Acta Optica Sinica, 2023, 43(17): 1712001
Category: Instrumentation, Measurement and Metrology
Received: May. 23, 2023
Accepted: Jul. 4, 2023
Published Online: Sep. 14, 2023
The Author Email: Ye Jingfeng (yejingfeng@nint.ac.cn), Shao Jun (shaojun@nint.ac.cn)