Journal of Synthetic Crystals, Volume. 50, Issue 8, 1534(2021)
Lithography-Free Interdigitated Back Contact Silicon Solar Cells with Solution-Processed PEDOT∶PSS as the Efficient Hole Transport Layer
[1] [1] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2: 17032.
[2] [2] SIVARAMAKRISHNAN RADHAKRISHNAN H, UDDIN M D G, XU M L, et al. A novel silicon heterojunction IBC process flow using partial etching of doped a-Si∶H to switch from hole contact to electron contact in situ with efficiencies close to 23%[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(11): 959-970.
[3] [3] VASUDEVAN R, HARRISON S, D’ALONZO G, et al. Laser-induced BSF: a new approach to simplify IBC-SHJ solar cell fabrication[J]. AIP Conference Proceedings, 2018, 1999(1): 040024.
[4] [4] WAGNER P, STANG J C, MEWS M, et al. Interdigitated back contact silicon heterojunction solar cells: towards an industrially applicable structuring method[J]. AIP Conference Proceedings, 2018, 1999(1): 060001.
[5] [5] TUCCI M, SERENELLI L, SALZA E, et al. Innovative design of amorphous/crystalline silicon heterojunction solar cell[J]. Thin Solid Films, 2008, 516(20): 6771-6774.
[6] [6] LI F C, SUN Z H, ZHOU Y R, et al. Lithography-free and dopant-free back-contact silicon heterojunction solar cells with solution-processed TiO2 as the efficient electron selective layer[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110196.
[7] [7] TOMASI A, PAVIET-SALOMON B, JEANGROS Q, et al. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth[J]. Nature Energy, 2017, 2: 17062.
[8] [8] BATTAGLIA C, YIN X T, ZHENG M, et al. Hole selective MoOx contact for silicon solar cells[J]. Nano Letters, 2014, 14(2): 967-971.
[9] [9] GEISSBHLER J, WERNER J, MARTIN DE NICOLAS S, et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector[J]. Applied Physics Letters, 2015, 107(8): 081601.
[10] [10] YANG X B, ZHENG P T, BI Q Y, et al. Silicon heterojunction solar cells with electron selective TiOx contact[J]. Solar Energy Materials and Solar Cells, 2016, 150: 32-38.
[11] [11] MASMITJ G, GERLING L G, ORTEGA P, et al. V2Ox-based hole-selective contacts for c-Si interdigitated back-contacted solar cells[J]. Journal of Materials Chemistry A, 2017, 5(19): 9182-9189.
[12] [12] SHEN X J, SUN B Q, LIU D, et al. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture[J]. Journal of the American Chemical Society, 2011, 133(48): 19408-19415.
[13] [13] HE J, GAO P Q, LIAO M D, et al. Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression[J]. ACS Nano, 2015, 9(6): 6522-6531.
[14] [14] WU S, CUI W, AGHDASSI N, et al. Nanostructured Si/organic heterojunction solar cells with high open-circuit voltage via improving junction quality[J]. Advanced Functional Materials, 2016, 26(28): 5035-5041.
[15] [15] HE J, GAO P Q, YANG Z H, et al. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer[J]. Advanced Materials, 2017, 29(15): 1606321.
[16] [16] SHEN R, SUN Z, SHI Y, et al. Solution processed organic/silicon nanowires hybrid heterojunction solar cells using organosilane incorporated poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) as hole transport layers[J]. ACS Nano, 2021.
[17] [17] ZHANG X S, YANG D, YANG Z, et al. Improved PEDOT∶PSS/c-Si hybrid solar cell using inverted structure and effective passivation[J]. Scientific Reports, 2016, 6: 35091.
[18] [18] LIN H, DING D, WANG Z L, et al. Realization of interdigitated back contact silicon solar cells by using dopant-free heterocontacts for both polarities[J]. Nano Energy, 2018, 50: 777-784.
[19] [19] LI F C, ZHOU Y R, YANG Y, et al. Silicon heterojunction solar cells with MoOx hole-selective layer by hot wire oxidation-sublimation deposition[J]. Solar RRL, 2020, 4(3): 1900514.
[20] [20] SHI H, LIU C C, JIANG Q L, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: a review[J]. Advanced Electronic Materials, 2015, 1(4): 1500017.
[21] [21] CAMERON J, SKABARA P J. The damaging effects of the acidity in PEDOT∶PSS on semiconductor device performance and solutions based on non-acidic alternatives[J]. Materials Horizons, 2020, 7(7): 1759-1772.
[22] [22] HAMMOND S R, MEYER J, WIDJONARKO N E, et al. Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics[J]. Journal of Materials Chemistry, 2012, 22(7): 3249.
[23] [23] LIU R Y, LEE S T, SUN B Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer[J]. Advanced Materials, 2014, 26(34): 6007-6012.
Get Citation
Copy Citation Text
SUN Zongheng, SHEN Rongzong, SHI Yanbin, ZHOU Yurong, ZHOU Yuqin, LIU Fengzhen. Lithography-Free Interdigitated Back Contact Silicon Solar Cells with Solution-Processed PEDOT∶PSS as the Efficient Hole Transport Layer[J]. Journal of Synthetic Crystals, 2021, 50(8): 1534
Category:
Received: May. 6, 2021
Accepted: --
Published Online: Nov. 6, 2021
The Author Email: Zongheng SUN (sunzongheng18@mails.ucas.ac.cn)
CSTR:32186.14.