Chinese Journal of Lasers, Volume. 34, Issue 7, 883(2007)
Progress in Room-Temperature Stable Multi-Wavelength Fiber Laser Technologies
[1] [1] S. B. Poole, D. N. Payne, M. E. Fermann. Fabrication of low-loss optical fibers containing rare-earth ions [J]. Electron. Lett., 1985, 21(17):737~738
[2] [2] R. J. Mears, L. Reekie, S. B. Poole et al.. Low-threshold tunable-CW and Q-switched fiber laser operating at 1.54 μm [J]. Electron. Lett., 1986, 22(3):159~160
[3] [3] R. J. Mears, L. Reekie, I. M. Jauncey et al.. Low-noise erbium-doped fiber amplifier operating at 1.54μm [J]. Electron. Lett., 1987, 23(19):1026~1028
[4] [4] N. Park, P. F. Wysocki. 24-line multiwavelength operation of erbium-doped fiber-ring laser [J]. IEEE Photon. Technol. Lett., 1996, 8(11):1459~1461
[5] [5] A. Bellemare, M. Karasek, M. Rochette et al.. Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid [J]. J. Lightwave Technol., 2000, 18(6):825~831
[6] [6] Y. -G. Han, T. V. A. Tran, S. B. Lee. Wavelength-spacing tunable multi wavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shift fiber [J]. Opt. Lett., 2006, 31(6):697~699
[7] [7] S. Pan, C. Lou, Y. Gao. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter [J]. Opt. Express, 2006, 14(3):1113~1118
[8] [8] J. Sun, J. Qiu, D. Huang. Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning [J]. Opt. Commun., 2000, 182(1-3):193~197
[9] [9] Y. Kimura, M. Nakazawa. Multiwavelength cw laser oscillation in a Nd3+ and Er3+ doubly doped fiber laser [J]. Appl. Phys. Lett., 1988, 53(14):1251~1253
[10] [10] N. Park, J. W. Dawson, K. J. Vahala. Multiple wavelength operation of an erbium-doped fiber laser [J]. IEEE Photon. Technol. Lett., 1992, 4(6):540~541
[12] [12] J. J. Yu, K. J. Guan, B. J. Yang. Multiwavelength generation in an erbium-doped fiber laser using a Fabry-Perot filter [J]. Microwave Optical Technol. Lett., 1998, 19(1):51~54
[13] [13] Z. H. Li, C. Y. Lou, Y. Z. Gao. A multiwavelength erbium-doped fiber laser realized by controlling the polarization state [J]. International Journal of Infrared and Millimeter Waves, 1999, 20(8):1487~1491
[14] [14] E. Desurvire, J. L. Zyskind, J. R. Simpson. Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers [J]. IEEE Photon. Technol. Lett., 1990, 2(4):246~248
[15] [15] J. L. Zyskind, E. Desurvire, J. W. Sulhoff et al.. Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2∶SiO2 core [J]. IEEE Photon. Technol. Lett., 1990, 2(12):869~871
[16] [16] J. W. Sulhoff, A. K. Srivastava, C. Wolf et al.. Spectral-hole burning in erbium-doped silica and fluoride fibers [J]. IEEE Photon. Technol. Lett., 1997, 9(12):1578~1579
[17] [17] S. Yamashita, K. Hotate. Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen [J]. Electon. Lett., 1996, 32(14):1298~1299
[18] [18] A. Bellemare, M. Karásek, M. Rochette et al.. Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid [J]. J. Lightwave Technol, 2000, 18(6):825~829
[19] [19] S. K. Kim, M. J. Chu, J. H. Lee. Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback [J]. Opt. Commun., 2001, 190:291~302
[20] [20] J. Maran, S. LaRochelle, P. Besnard. C-band multi-wavelength frequency- shifted erbium-doped fiber laser [J]. Opt. Commun., 2003, 218:81~86
[21] [21] K. Zhou, D. Zhou, F. Dong et al.. Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback [J]. Opt. Lett., 2003, 28(11):893~895
[22] [22] X. Liu, X. Zhou, C. Lu. Four-wave mixing assisted stability enhancement: Theory, experiment, and application [J]. Opt. Lett., 2005, 30(17):2257~2259
[23] [23] X. Yang, X. Dong, S. Zhang et al.. Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber [J]. IEEE Photon. Technol. Lett., 2005, 17(12):2538~2540
[24] [24] Xinhuan Feng, H. Tam, Heliang Liu et al.. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror [J]. Opt. Commun., 2006, 268:278~281
[25] [25] Xinhuan Feng, H. Tam, P. K. A. Wai. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation [J]. Optics Express, 2006, 14(18):8206~8210
[27] [27] J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter et al.. Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber [J]. IEEE Photon. Technol. Lett., 1998, 10(7):941~943
[28] [28] Y. W. Lee, B. Lee. Wavelength-switchable Erbium-doped fiber ring laser using spectral polarization-dependent loss element [J]. IEEE Photon. Technol. Lett., 2003, 15(6):795~797
[29] [29] Xinhuan Feng, Yange Liu, Shenggui Fu et al.. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating [J]. IEEE Photon.Technol.Lett., 2004, 16(3):762~764
[30] [30] Xinhuan Feng, Yange Liu, Shuzhong Yuan et al.. L-band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating [J]. Opt. Express, 2004, 12(16):3834~3839
[31] [31] A. J. Poustie, N. Finlayson, P. Harper. Multiwavelength fiber laser using a spatial mode beating filter [J]. Opt. Lett., 1994, 19(10):716~718
[34] [34] Lei Sun, Xinhuan Feng, Weigang Zhang et al.. Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating [J]. IEEE Photon.Technol.Lett., 2004, 16(6):1453~1455
[35] [35] Yange Liu, Xinhuan Feng, Shuzhong Yuan et al.. Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings [J]. Opt. Express, 2004, 12(10):2056~2061
[36] [36] Yange Liu, Xinyong Dong, Ping Shum et al.. Stable room-temperature multi-wavelength lasing realization in ordinary erbium-doped fiber loop lasers [J]. Opt. Express, 2006, 14(20):9293~9298
[37] [37] I. N. Duling, C.-J. Chen, P. K. A. Wai et al.. Operation of a nonlinear loop mirror in a laser cavity [J]. IEEE J. Quantum Electron., 1994, 30(1):194~199
[38] [38] K. Smith, N. J. Doran, P. G. J. Wigley. Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror [J]. Opt. Lett., 1990, 15(22):1294~1296
[39] [39] K. Tamura, H. A. Haus, E. P. Ippen. Self-starting additive pulse mode-locked erbium fiber ring laser [J]. Electron. Lett., 1992, 28(24):2226~2228
[40] [40] Yuhua Li, Caiyun Lou, Jian Wu et al.. Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser [J]. IEEE Photon.Technol. Lett., 1998, 10(9):1250~1252
[41] [41] Zhihong Li, Caiyun Lou, Kam et al.. Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser [J]. IEEE J. Quantum Electron., 2001, 37(1):33~37
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Progress in Room-Temperature Stable Multi-Wavelength Fiber Laser Technologies[J]. Chinese Journal of Lasers, 2007, 34(7): 883