Acta Optica Sinica, Volume. 40, Issue 19, 1910001(2020)
Indoor RGB-D Image Semantic Segmentation Based on Dual-Stream Weighted Gabor Convolutional Network Fusion
[1] Ronneberger O, Fischer P, Brox T[M]. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).
[3] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[4] Chen L C, Zhu Y K, Papandreou G et al[M]. Encoder-decoder with atrous separable convolution for semantic image segmentation, 833-851(2018).
[5] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1520-1528(2015).
[6] Liu W, Rabinovich A. -11-19)[2020-04-26]. https:∥arxiv., org/abs/1506, 04579(2015).
[8] Yu F. -04-30)[2020-04-26]. https:∥arxiv., org/abs/1511, 07122(2016).
[10] [10] Lin GS, MilanA, Shen CH, et al.RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE Press, 2017: 5168- 5177.
[12] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation[C]∥2018 IEEE Winter Conference on Applications of Computer Vision (WACV), March 12-15, 2018, Lake Tahoe, NV, USA., 1451-1460(2018).
[13] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1529-1537(2015).
[14] Lin G S. Shen C H, van den Hengel A, et al. Efficient piecewise training of deep structured models for semantic segmentation[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-3, 3194-3203(2016).
[15] Arnab A, Jayasumana S, Zheng S et al[M]. Higher order conditional random fields in deep neural networks, 524-540(2016).
[16] Ren X F, Bo L F, Fox D. RGB-(D), 2759-2766(2012).
[17] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images[M]. ∥Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 746-760(2012).
[18] [18] HeY, Chiu WC, KeuperM, et al.STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE Press, 2017: 7158- 7167.
[19] Cheng Y H, Cai R, Li Z W et al. Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, 1475-1483(2017).
[20] Yurdakul E E, Yemez Y. Semantic segmentation of RGBD videos with recurrent fully convolutional neural networks[C]∥2017 IEEE International Conference on Computer Vision Workshops (ICCVW), October 22-29, 2017, Venice, Italy., 367-374(2017).
[21] [21] Hu XX, Yang KL, FeiL, et al.ACNET: attention based network to exploit complementary features for RGBD semantic segmentation[C]∥2019 IEEE International Conference on Image Processing (ICIP), September 22-25, 2019, Taipei, Taiwan, China. New York: IEEE Press, 2019: 1440- 1444.
[22] Lin D, Zhang R M, Ji Y F et al. SCN: switchable context network for semantic segmentation of RGB-D images[J]. IEEE Transactions on Cybernetics, 50, 1120-1131(2020).
[24] Luan S Z, Chen C, Zhang B C et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 27, 4357-4366(2018).
[25] Zagoruyko S. -06-14) [2020-04-26]. https:∥arxiv., org/abs/1605, 07146(2017).
[27] Janoch A, Karayev S, Jia Y Q et al. A category-level 3-, 1168-1174(2011).
[28] [28] Xiao JX, OwensA, TorralbaA. SUN3D: a database of big spaces reconstructed using SfM and object labels[C]∥2013 IEEE International Conference on Computer Vision, December 1-8 2013, Sydney, NSW, Australia. New York: IEEE Press, 2013: 1625- 1632.
Get Citation
Copy Citation Text
Xuchu Wang, Huihuang Liu, Yanmin Niu. Indoor RGB-D Image Semantic Segmentation Based on Dual-Stream Weighted Gabor Convolutional Network Fusion[J]. Acta Optica Sinica, 2020, 40(19): 1910001
Category: Image Processing
Received: Apr. 26, 2020
Accepted: Jun. 19, 2020
Published Online: Sep. 23, 2020
The Author Email: Wang Xuchu (xcwang@cqu.edu.cn)