Optoelectronics Letters, Volume. 21, Issue 9, 535(2025)
Ultrafast fiber laser based on gold nanoparticle supported on carbon black saturable absorber
[1] [1] DIDYCHENKO D, KOVALCHUK O, UDDIN S, et al. Chromatic dispersion-tolerant mode-locking of directly synthesized graphene for the control of laser pulse energy[J]. Optical materials, 2024, 150: 115259.
[2] [2] ALGHAMDI T A, ADWAN S, AROF H, et al. Q-switched triple-wavelength erbium-doped fiber laser with black phosphorus absorber[J]. Optik, 2024, 311: 171874.
[3] [3] LI L, PANG L, WANG R, et al. Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser[J]. Laser & photonics reviews, 2022, 16(2): 2100255.
[4] [4] WU M, XIAO Y, ZENG Y, et al. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics[J]. InfoMat, 2021, 3(4): 362-396.
[5] [5] QIU M, SUN Z, SANG D K, et al. Current progress in black phosphorus materials and their applications in electrochemical [6]energy storage[J]. Nanoscale, 2017, 9(36): 13384-13403.
[6] [6] SINGH V, LIN P T, PATEL N, et al. Mid-infrared materials and devices on a Si platform for optical sensing[J]. Science and technology of advanced materials, 2014, 15(1): 014603.
[7] [7] AUTERE A, JUSSILA H, DAI Y, et al. Nonlinear optics with 2D layered materials[J]. Advanced materials, 2018, 30(24): 1705963.
[8] [8] YIN K, LU D, TIAN W, et al. Ordered structures of alkylated carbon dots and their applications in nonlinear optics[J]. Journal of materials chemistry C, 2020, 8(26): 8980-8991.
[9] [9] PHILIP R, CHANTHARASUPAWONG P, QIAN H, et al. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals[J]. Nano letters, 2012, 12(9): 4661-4667.
[10] [10] WANG K, XIE Z, JI J, et al. Novel optical Kerr switching photonic device based on nonlinear carbon material[J]. Micromachines, 2023, 14(12): 2216.
[11] [11] NAKAZAWA M. Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics[J]. Journal of optical and fiber communications reports, 2005, 2(5): 462-496.
[12] [12] CHUNG H Y, GREINERT R, KRTNER F X, et al. Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast laser source[J]. Biomedical optics express, 2019, 10(2): 514-525.
[13] [13] RACIUKAITIS G. Ultra-short pulse lasers for microfabrication: a review[J]. IEEE journal of selected topics in quantum electronics, 2021, 27(6): 1-12.
[14] [14] YANG Y, JI Y, XIE Y, et al. Generation and observation of noise-like pulses in an ultrafast fiber laser at 1.7 m[J]. Optics & laser technology, 2024, 174: 110715.
[15] [15] HIROTA R. Exact envelope-soliton solutions of a nonlinear wave equation[J]. Journal of mathematical physics, 1973, 14(7): 805-809.
[16] [16] EID M, MOHAMMED A, RASHED A. Different soliton pulse order effects on the fiber communication systems performance evaluation[J]. Indonesian journal of electrical engineering and computer science, 2021, 23(3): 1485-1492.
[17] [17] SONG Y, SHI X, WU C, et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied physics reviews, 2019, 6(2): 021313.
[18] [18] LI W, LIN R, CHEN G, et al. Observation of three kinds of bound solitons in a black phosphorus-based erbium fiber laser[J]. Optical fiber technology, 2024, 82: 103617.
[19] [19] BECHEKER R, TANG M, HANZARD P H, et al. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 m[J]. Laser physics letters, 2018, 15(11): 115103.
[20] [20] LIU J, LI M, HE J, et al. Noisy soliton pulsation and its dynamics in a mid-infrared ultrafast fiber laser[J]. Chaos, solitons & fractals, 2023, 177: 114199.
[21] [21] ZHANG B, WANG Z, ZHANG C, et al. Gold nanocluster-modified titanium nitride for ultrafast photonics applications[J]. Advanced electronic materials, 2021, 7(7): 2000954.
[22] [22] LIU W, LIU M, LIU X, et al. Recent advances of 2D materials in nonlinear photonics and fiber lasers[J]. Advanced optical materials, 2020, 8(8): 1901631.
[23] [23] CHEN S, WANG Q, ZHAO C, et al. Stable single-longitudinal-mode fiber ring laser using topological insulator-based saturable absorber[J]. Journal of lightwave technology, 2014, 32(22): 4438-4444.
[24] [24] NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied physics B, 1997, 65(2): 277-294.
[25] [25] KHALEEL W A, SADEQ S A, ALANI I A M, et al. Magnesium oxide (MgO) thin film as saturable absorber for passively mode locked erbium-doped fiber laser[J]. Optics & laser technology, 2019, 115: 331-336.
[26] [26] ALANI I A M, LOKMAN M Q, AHMED M H M, et al. A few-picosecond and high-peak-power passively mode-locked erbium-doped fibre laser based on zinc oxide polyvinyl alcohol film saturable absorber[J]. Laser physics, 2018, 28(7): 075105.
[27] [27] NADY A, AHMED M H M, LATIFF A A, et al. Femtoseconds soliton mode-locked erbium-doped fiber laser based on nickel oxide nanoparticle saturable absorber[J]. Chinese optics letters, 2017, 15(10): 100602.
[28] [28] LI Z, LONG H, WEN M R, et al. Femtosecond mode-locked laser at 1.5 m region using topological semimetals NbAs nanosheets[J]. Optics & laser technology, 2024, 175: 110784.
[29] [29] YANG F, SUN S, CHEN S, et al. Passively mode-locked Er-doped fiber laser based on a ferromagnetic insulator Cr2Si2Te6 as a saturable absorber[J]. Applied optics, 2022, 61(4): 898-903.
Get Citation
Copy Citation Text
JI Yubo, WANG Zhenyu, YANG Yatao, LIU Qidong, DU Geguo. Ultrafast fiber laser based on gold nanoparticle supported on carbon black saturable absorber[J]. Optoelectronics Letters, 2025, 21(9): 535
Category: Devices
Received: Jun. 27, 2024
Accepted: Sep. 15, 2025
Published Online: Sep. 15, 2025
The Author Email: