Journal of Synthetic Crystals, Volume. 51, Issue 3, 450(2022)
Theoretical Study on Photocatalytic Activity of X/g-C3N4 (X=g-C3N4, AlN and GaN) Heterojunction
[1] [1] RODRIGUES A S, JORGE M E M, CIRACO L, et al. Perovskites (La, Ba)(Fe, Ti)O3: AO7 photocatalysis under visible light[J]. Reviews on Advanced Materials Science, 2020, 59(1): 151-159.
[2] [2] YE L M, LU P, CHEN X B, et al. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Applied Catalysis B: Environmental, 2020, 277: 119257.
[3] [3] SINGH M, SINHA I. Halide perovskite-based photocatalysis systems for solar-driven fuel generation[J]. Solar Energy, 2020, 208: 296-311.
[4] [4] ZHANG F B, WANG X M, LIU H N, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Applied Sciences, 2019, 9(12): 2489.
[5] [5] WANG B, WANG M Y, LIU F Y, et al. Ti3C2: an ideal co-catalyst? [J]. Angewandte Chemie, 2020, 59(5): 1914-1918.
[8] [8] PRASAD S, SHANMUGAM P, BHUVANESWARI K, et al. Rod-shaped carbon aerogel-assisted CdS nanocomposite for the removal of methylene blue dye and colorless phenol[J]. Crystals, 2020, 10(4): 300.
[9] [9] LV Z S, LIU L, ZHANGYANG X Y, et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode[J]. Applied Physics A, 2020, 126(3): 1-9.
[10] [10] TONG T, ZHU B C, JIANG C J, et al. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4[J]. Applied Surface Science, 2018, 433: 1175-1183.
[11] [11] WU Y L, WANG Y M, LI M T. Progress in photocatalysis of g-C3N4 and its modified compounds[J]. E3S Web of Conferences, 2021, 233: 01114.
[12] [12] LIU X L, MA R, ZHUANG L, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(8): 751-790.
[13] [13] STARUKH H, PRAUS P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis[J]. Catalysts, 2020, 10(10): 1119.
[14] [14] STEJSKAL J, ACHARYA U, BOBER P, et al. Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction[J]. Applied Surface Science, 2019, 492: 497-503.
[15] [15] D N, HUMAYUN M, BHATTACHARYYA D, et al. Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396: 112515.
[16] [16] WANG G R, JIN Z L. Rationally designed functional Ni2P nanoparticles as co-catalyst modified CdS@g-C3N4 heterojunction for efficient photocatalytic hydrogen evolution[J]. ChemistrySelect, 2019, 4(12): 3602-3610.
[19] [19] ZHANG M, LIU X Z, ZENG X, et al. Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions[J]. Chemical Physics Letters, 2020, 738: 100049.
[20] [20] WU F, ZHANG Z B, CHENG Z P, et al. The enhanced photocatalytic reduction of uranium(Ⅵ) by ZnS@g-C3N4 heterojunctions under sunlight[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(2): 1125-1133.
[21] [21] YE C Y, WANG R, WANG H Y, et al. The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen[J]. BMC Chemistry, 2020, 14(1): 65.
[22] [22] AL-ZAQRI N, AHMED M A, ALSALME A, et al. Synthesis of novel direct Z-scheme AgVO3-g-C3N4 heterojunction for photocatalytic hydrogen production and bisphenol degradation[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2601-2617.
[23] [23] AI C Z, LI J, YANG L, et al. Transforming photocatalytic g-C3N4/MoSe2 into a direct Z-scheme system via boron-doping: a hybrid DFT study[J]. ChemSusChem, 2020, 13(18): 4985-4993.
[24] [24] MA X G, CHEN C, HU J S, et al. Evidence of direct Z-scheme g-C3N4/WS2 nanocomposite under interfacial coupling: first-principles study[J]. Journal of Alloys and Compounds, 2019, 788: 1-9.
[25] [25] XUE Z, ZHANG X Y, QIN J Q, et al. Constructing MoS2/g-C3N4 heterojunction with enhanced oxygen evolution reaction activity: a theoretical insight[J]. Applied Surface Science, 2020, 510: 145489.
[26] [26] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570.
[27] [27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[28] [28] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005.
[29] [29] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747.
[30] [30] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53-55.
[32] [32] MA X G, HU J S, HE H, et al. New understanding on enhanced photocatalytic activity of g-C3N4/BiPO4 heterojunctions by effective interfacial coupling[J]. ACS Applied Nano Materials, 2018, 1(10): 5507-5515.
[34] [34] IVANOV A S, MILLER E, BOLDYREV A I, et al. Pseudo jahn-teller origin of buckling distortions in two-dimensional triazine-based graphitic carbon nitride (g-C3N4) sheets[J]. The Journal of Physical Chemistry C, 2015, 119(21): 12008-12015.
[37] [37] PHAM T A, PING Y, GALLI G. Modelling heterogeneous interfaces for solar water splitting[J]. Nature Materials, 2017, 16(4): 401-408.
[38] [38] LIU Z R, YU X, LI L L. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field[J]. Chinese Journal of Catalysis, 2020, 41(4): 534-549.
Get Citation
Copy Citation Text
LIU Chenxi, PAN Duoqiao, PANG Guowang, SHI Leiqian, ZHANG Lili, LEI Bocheng, ZHAO Xucai, HUANG Yineng. Theoretical Study on Photocatalytic Activity of X/g-C3N4 (X=g-C3N4, AlN and GaN) Heterojunction[J]. Journal of Synthetic Crystals, 2022, 51(3): 450
Category:
Received: Nov. 22, 2021
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: Chenxi LIU (liuchenxi4674@sina.com)
CSTR:32186.14.