Acta Optica Sinica, Volume. 40, Issue 2, 0228001(2020)
Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification
Fig. 2. ERS segmentation and ground-truth images. (a) ERS segmentation image; (b) ground-truth image
Fig. 3. Hyperspectral images in Indian Pines dataset. (a) False-color image; (b) ground-truth image
Fig. 4. Hyperspectral images in Washington DC Mall dataset. (a) False-color image; (b) ground-truth image
Fig. 5. Overall classification accuracy of SSRMDA algorithm with different values of K and Kb on different datasets. (a) Indian Pines dataset; (b) Washington DC Mall dataset
Fig. 6. Overall classification accuracy of SSRMDA algorithm with different α values
Fig. 8. Classification diagrams of different algorithms on Washington DC Mall dataset
|
|
|
|
Get Citation
Copy Citation Text
Hong Huang, Lihua Wang, Guangyao Shi. Spatially-Regularized Manifold Discriminant Analysis Algorithm for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2020, 40(2): 0228001
Category: Remote Sensing and Sensors
Received: Jul. 18, 2019
Accepted: Sep. 6, 2019
Published Online: Jan. 2, 2020
The Author Email: Huang Hong (hhuang@cqu.edu.cn)