Journal of Quantum Optics, Volume. 27, Issue 2, 109(2021)

Analysis of the Noise Spectra in Balanced Homodyne Detector

PAN Guo-xin, LIU Hui, ZHAI Ze-hui, and LIU Jian-li*
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [1] [1] Yuen H P, Chan V W S. Noise in homodyne and heterodyne detection[J]. Opt Lett, 1983, 8(3): 177-179. DOI: 10.1364/ol.8.000177.

    [2] [2] Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10-dB quantum noise Reduction[J]. Phys Rev Lett, 2008, 100: 033602. DOI: 10.1103/PhysRevLett.100.033602.

    [3] [3] Mehmet M, Ast S, Eberle T, et al. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB[J]. Opt Express, 2011, 19: 25763-25772. DOI: 10.1364/OE.19.025763.

    [4] [4] Yang W H, Jin X L, Yu X D, et al. Dependence of measured audio-band squeezing level on local oscillator intensity noise[J]. Opt Express, 2017, 25: 24262-24271. DOI: 10.1364/OE.25.024262

    [5] [5] Shi S P, Wang Y J, Yang W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Opt Lett, 2018, 43: 5411-5414. DOI: 10.1364/OL.43.005411.

    [6] [6] Jeong H, Zavatta A, Kang M, et al. Generation of hybrid entanglement of light[J]. Nature photon, 2014, 8: 564-569. DOI: 10.1038/NPHOTON.2014.136.

    [7] [7] Wang M H, Qin Z Z, Su X L. Swapping of Gaussian Einstein-Podolsky-Rosen steering[J]. Phys Rev A, 2017, 95: 052311. DOI: 10.1103/PhysRevA.95.052311.

    [8] [8] Morin O, DAuria V, Fabre C, Laurat J. High-fidelity single-photon source based on a Type II optical parametric oscillator[J]. Opt Lett, 2012, 37(17): 3738-3740. DOI: 10.1364/OL.37.003738.

    [9] [9] MacRae A, Brannan T, Achal R, Lvovsky A I. Tomography of a high-purity narrowband photon from a transient atomic collective excitation[J]. Phys Rev Lett, 2012, 109: 033601. DOI:10.1103/PhysRevLett.109.033601.

    [10] [10] Lvovsky A I, Mlynek J. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics[J]. Phys Rev Lett, 2002, 88: 250401. DOI: 10.1103/PhysRevLett.88.250401.

    [11] [11] Zhou Y Y, Yu J, Yan Z H, et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field[J]. Phys Rev Lett, 2018, 121: 150502. DOI: 10.1103/PhysRevLett.121.150502.

    [12] [12] Jouguet P, Kunz-Jacques S, Leverrier A, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photon, 2013, 7: 378-381. DOI:10.1038/NPHOTON.2013.63.

    [13] [13] Masalov A V, Kuzhamuratov A, Lvovsky A I. Noise spectra in balanced optical detectors based on transimpedance amplifiers[J]. Rev Sci Instrum, 2017, 88: 113109. DOI: 10.1063/1.5004561.

    [14] [14] Appel J, Hoffman D, Figueroa E, Lvovsky A I. Electronic noise in optical homodyne tomography[J]. Phys Rev A, 2007, 75: 035802. DOI: 10.1103/PhysRevA.75.035802.

    [15] [15] Mahler D H, Raffaelli F, Ferranti G, et al. Conference on Lasers and Electro-Optics, San Jose, May 14-19, 2017[C]. Optical Society of America, 2017. DOI: 10.1364/CLEO_AT.2017.JTh3E.6.

    [16] [16] Wang S F, Xiang X, Zhou C H, et al. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification[J]. Rev Sci Instrum, 2017, 88: 013107. DOI: 10.1063/1.4973853.

    [17] [17] Kumar R, Barrios E, MacRae A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Opt Commun, 2012, 285: 5259-5267. DOI: 10.1016/j.optcom.2012.07.103.

    [18] [18] Huang D, Fang J, Wang C, et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chin Phys Lett, 2013, 30: 114209. DOI: 10.1088/0256-307X/30/11/114209.

    [19] [19] Jin X L, Su J, Zheng Y H, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Opt Express, 2015, 23: 23859-23866. DOI: 10.1364/OE.23.023859.

    [20] [20] Zhang X X, Zhang Y C, Li Z Y, et al. 1.2-GHz balanced homodyne detector for continuous-variable quantum information technology[J]. IEEE Photonics Journal, 2018, 10: 6803810. DOI: 10.1109/JPHOT.2018.2866514.

    [21] [21] Serikawa T, Furusawa A. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement[J]. Rev Sci Instrum, 2018, 89: 063120. DOI: 10.1063/1.5029859.

    [22] [22] Lu Q M, Shen Q, Cao Y, et al. Ultra-Low-Noise balanced detectors for optical time-domain measurements[J]. IEEE Transactions on Nuclear Science, 2019, 66: 1048-1054. DOI: 10.1109/TNS.2018.2885364.

    [23] [23] Wang J R, Wang Q W, Tian L, et al. A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1~100 kHz range[J]. Chin Phys B, 2020, 29(3): 034205. DOI: 10.1088/1674-1056/ab683b.

    [26] [26] FD500W datasheet, Fermionics Opto-Technology http://www.fermionics.com/fd500.html [2020-10-13].

    [27] [27] LMH6624 data sheet, Texas Instruments https://www.ti.com/product/LMH6624 [2020-10-13].

    CLP Journals

    [1] LIU Hui, ZHANG Zhuo, LING Zhi-qiang, LIU Jian-li. Simulation and Analysis of the Wideband Photodetector with Transimpedance Operational Amplifier[J]. Journal of Quantum Optics, 2023, 29(1): 10201

    Tools

    Get Citation

    Copy Citation Text

    PAN Guo-xin, LIU Hui, ZHAI Ze-hui, LIU Jian-li. Analysis of the Noise Spectra in Balanced Homodyne Detector[J]. Journal of Quantum Optics, 2021, 27(2): 109

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 25, 2021

    Accepted: --

    Published Online: Sep. 13, 2021

    The Author Email: LIU Jian-li (liujl@sxu.edu.cn)

    DOI:10.3788/jqo20212702.0301

    Topics