Chinese Journal of Lasers, Volume. 42, Issue 9, 903002(2015)
Experimental Research of Warm Laser Shock Forming of AZ31 Magnesium Alloy
[1] [1] Ye C, Sergey S, Bong J K, et al.. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025.
[2] [2] Ye C, Liao Y L, Gary J C. Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Advanced Engineering Materials, 2010, 12(4): 290-297.
[3] [3] Ye C, Liao Y L, Suslov S, et al.. Ultrahigh dense and gradient nano- precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Scinece and Engineering: A, 2014, 609: 195-203.
[4] [4] Liao Y L, Ye C, Gao H, et al.. Dislocation pinning effects induced by nano- precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments[J]. Journal of Appliend Physics, 2011, 110(2): 023518.
[5] [5] Liao Y L, Suslov S, Ye C, et al.. The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance[J]. Acta Materialia, 2012, 60(13-14): 4997-5009.
[6] [6] Tani G, Orazi L, Fortunato A, et al.. Warm laser shock peening: New developments and process optimization[J]. CIRP Annals-Manufacturing Technology, 2011, 60(13): 219-222.
[7] [7] Zhang H, Huang G S, Fan J F, et al.. Deep drawability and deformation behavior of AZ31 magnesium alloy sheets at 473 K[J]. Materials Science and Engineering: A, 2014, 608(1): 234-241.
[8] [8] Zhang Qinglai, Hu Yongxue, Wang Lili. Stress-strain of uniaxial tension and recrystallization structures of AZ31B magnesium alloy [J]. Rare Metal Materials and Engineering, 2008, 37(4): 678-681.
[9] [9] Zhang Qinglai, Hong Yanxin, Wang Rong, et al.. The effect of laser shock forming on the microstructure and residual stress of AZ31 magnesium alloy[J]. Chinese Journal of Materials Research, 2014, 28(3): 166-172.
[11] [11] Huang Shu, Zhou Jianzhong, Jiang Suqin, et al.. Study on strain hardening and fatigue fracture of AZ31B magnesium alloy after laser shot peening[J]. Chinese J Lasers, 2011, 38(8): 0803002.
[12] [12] Li X C, Zhang Y K, Chen J F, et al.. Effect of laser shock processing on stress corrosion cracking behaviour of AZ31 magnesium alloy at slow strain rate[J]. Materials Science and Technology, 2013, 29(5): 626-630.
[13] [13] Ge Maozhong, Xiang Jianyun, Zhang Yongkang. Surface nanocrystallization of AZ31B magnesium alloy induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 856-861.
[14] [14] Zhang Xuefeng, Wu Guohua, Ding Wenjiang. Mechanical properties and microstructures of AZ31 magnesium alloy after high and low temperature treatment[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(12): 2979-2986.
[15] [15] Zou D L, Zhen L, Zhu Y, et al.. Deformed microstructure evolution in AM60B Mg alloy under hypervelocity impact at a velocity of 5 km/s [J]. Materials & Design, 2010, 31(8): 3708-3715.
Get Citation
Copy Citation Text
Zhang Qinglai, Wu Tiedan, Zhang Bingxin, Li Xingcheng, Shao Wei. Experimental Research of Warm Laser Shock Forming of AZ31 Magnesium Alloy[J]. Chinese Journal of Lasers, 2015, 42(9): 903002
Received: Mar. 23, 2015
Accepted: --
Published Online: Sep. 6, 2015
The Author Email: Qinglai Zhang (zhangql196210@163.com)