Remote Sensing Technology and Application, Volume. 39, Issue 4, 905(2024)

Research on Fire Detection Method based on Deep Neural Network MODIS Data

Jinpeng CHEN, Lin SUN*, Feifei XIE, Huijuan GAO, and Shuai GE
Author Affiliations
  • School of Surveying, Mapping and Spatial Information, Shandong University of Science and Technology, Qingdao266590,China
  • show less
    Figures & Tables(12)
    Surface coverage reflectance contrast curve
    Fully connected neural network structure diagram
    Statistical results of fire detection in different scenarios between DNN and CTA
    Fire test in China Central Plains on June 6, 2020
    Fire tests in Southeast Asia on January 26, 2018
    Fire test in Southeast Asia on January 26,2018
    • Table 1. U.S Wildfire Dataset(the fire area unit is acres)

      View table
      View in Article

      Table 1. U.S Wildfire Dataset(the fire area unit is acres)

      火灾名称火灾范围纬度经度发现日期扑灭日期
      INOWAK606 94561.982157.0866/25/19979/9/1997
      LONG DRAW558 198.342.391 89117.8947/8/20127/30/2012
      WALLOW538 04933.606 11109.455/29/20117/12/2011
      BOUNDARY537 62765.266 3146.8866/13/20049/30/2004
    • Table 2. Characteristics of the MOD021KM/MYD021KM

      View table
      View in Article

      Table 2. Characteristics of the MOD021KM/MYD021KM

      通道波长分布/nm信噪比空间分辨率/m
      1620~6701281 000
      2841~8762011 000
      3459~4792431 000
      4545~5652281 000
      51 230~1 250741 000
      61 628~1 6522751 000
      72 105~2 1551101 000
      213 929~3 9892.001 000
      223 929~3 9890.071 000
      311 078~1 1280.051 000
      321 177~1 2270.051 000
    • Table 3. Description of Brightness Temperature Mean and Mean Absolute Deviation

      View table
      View in Article

      Table 3. Description of Brightness Temperature Mean and Mean Absolute Deviation

      计算公式含义
      ΔBT4=i=1nBT4-BT4in4 um的中心像元与背景像元的亮度温度差
      ΔBT11=i=1nBT11-BT11in11 um的中心像元与背景像元的亮度温度差
      ΔBTb4-b11=ΔBT4-ΔBT11中心与背景像元在4 um与11 um亮温的差值平均值
      δ4=i=1nBT4i-i=1nBT4inn4 um背景窗口亮度温度平均绝对偏差
      δ11=i=1nBT11i-i=1nBT11inn11 um背景窗口亮度温度平均绝对偏差
      δb4-b11=i=1n(BT4i-BT11i)-i=1n(BT4i-BT11i)nn4 um与11 um背景亮度温差平均绝对偏差
    • Table 4. Network Input Characteristics

      View table
      View in Article

      Table 4. Network Input Characteristics

      热红外特征反射率特征指数特征
      BT4

      ρ1

      ρ2

      ρ5

      ρ7

      NDVI

      NDII7

      BT11
      BT12
      BT4-11
      ΔBT4
      ΔBT11
      ΔBTb4-b11
      δ4
      δ11
      δb4-b11
    • Table 5. Fire test set results for different input configurations

      View table
      View in Article

      Table 5. Fire test set results for different input configurations

      配置TPFPTNFNAccPreRecallF1-score
      A2 8411792 79910395.23%94.07%96.50%95.26%
      B2 863872 8918197.16%97.05%97.24%97.13%
      C2 896972 8814897.55%96.76%98.37%97.56%
    • Table 6. Manual comparison and verification results between DNN algorithm and CTA

      View table
      View in Article

      Table 6. Manual comparison and verification results between DNN algorithm and CTA

      区域算法总计正确检测错误检测重合个数
      中国中原DNN1551010
      CTA11916103
      东南亚DNN86761051
      CTA58535
      美国西部DNN3028226
      CTA36324
    Tools

    Get Citation

    Copy Citation Text

    Jinpeng CHEN, Lin SUN, Feifei XIE, Huijuan GAO, Shuai GE. Research on Fire Detection Method based on Deep Neural Network MODIS Data[J]. Remote Sensing Technology and Application, 2024, 39(4): 905

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 14, 2023

    Accepted: --

    Published Online: Jan. 6, 2025

    The Author Email: SUN Lin (sunlin6@126.com)

    DOI:10.11873/j.issn.1004-0323.2024.4.0905

    Topics