Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1000007(2024)

Progress on Data Acquisition Methods for Holographic 3D Display

Zhuojian Tong, Jinbin Gui*, Lei Hu, and Xianfei Hu
Author Affiliations
  • Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • show less
    References(98)

    [1] Marieb E N, Hoehn K N[M]. Human anatomy & physiology(2018).

    [2] Zeng J Y. Catadioptric panoramic stereo imaging[D](2003).

    [3] Xu W, Liu X D, Liu X et al. Volumetric 3D display technique based on image information derived from 3DS MAX[J]. Journal of Zhejiang University (Engineering Science), 39, 1723-1726(2005).

    [4] Xing J F, Gong H J, Shen C L et al. A volumetric display system based on DMD and swept volume technique[J]. Journal of Optoelectronics·Laser, 19, 1011-1015(2008).

    [5] Xie X Y, Liu X, Lin Y F. Study on gray scale deviations in three-dimensional volumetric display system based on geometric approximation[J]. Acta Optica Sinica, 29, 1508-1513(2009).

    [6] Yu Y J, Cai M Y, Zhang Z J. Analysis for geometric parameter relation of lenticular sheet based autostereoscopic[J]. Optoelectronic Technology, 30, 10-15(2010).

    [7] Huang T, Zhu Q D, Wang Y T et al. Paraxial magnification of stereoscopic display[J]. Acta Photonica Sinica, 39, 116-118(2010).

    [8] Kleinberger P, Kleinberger I D. Systems for three-dimensional viewing and projection[P].

    [9] Ezra D, Woodgate G J, Omar B A et al. New autostereoscopic display system[J]. Proceedings of SPIE, 2409, 10-14(1995).

    [10] Pastoor S, Liu J, Renault S. An experimental multimedia system allowing 3-D visualization and eye-controlled interaction without user-worn devices[J]. IEEE Transactions on Multimedia, 1, 41-52(1999).

    [11] Sang X Z, Fan F C, Jiang C C et al. Demonstration of a large-size real-time full-color three-dimensional display[J]. Optics Letters, 34, 3803-3805(2009).

    [12] Tian F, Liao W, Liu J G. Realization of auto-stereoscopic display system based on DLP[J]. Video Engineering, 34, 31-34(2010).

    [13] Bove V M. Display holography’s digital second act[J]. Proceedings of the IEEE, 100, 918-928(2012).

    [14] Dufaux F, Pesquet-Popescu B, Cagnazzo M[M]. Emerging technologies for 3D video: creation, coding, transmission, and rendering(2013).

    [15] Javidi B, Ferraro P, Hong S H et al. Three-dimensional image fusion by use of multiwavelength digital holography[J]. Optics Letters, 30, 144-146(2005).

    [16] Onural L, Gotchev A, Ozaktas H M et al. A survey of signal processing problems and tools in holographic three-dimensional television[J]. IEEE Transactions on Circuits and Systems for Video Technology, 17, 1631-1646(2007).

    [17] Wang D, Li J S. 2-D real color hologram making with white light recording method[J]. Journal of Chongqing University (Natural Science Edition), 26, 101-104(2003).

    [18] Pan W, Tian Y L. Digital implementation scheme of optical holograms[J]. Optics and Precision Engineering, 13, 15-20(2005).

    [19] Cao Y R. Calculation principle, method and system implementation of holographic display[D](2006).

    [20] Long X X, Cheng X J, Zhu H et al. Recent progress in 3D vision[J]. Journal of Image and Graphics, 26, 1389-1428(2021).

    [21] Ding S W, Zhang X H, Yu Q F et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 54, 070003(2017).

    [22] Zhang W M, Liu B, Li H B. Characteristic point extracts and the match algorithm based on the binocular vision in three dimensional reconstruction[J]. Optical Technique, 34, 181-185(2008).

    [23] Garcia E, Dugelay J L. Low cost 3D face acquisition and modeling[C], 657-661(2002).

    [24] Yao Y, Li S W, Zhu S Y et al. Relative camera refinement for accurate dense reconstruction[C], 185-194(2018).

    [25] Cremers D, Kolev K. Multiview stereo and silhouette consistency via convex functionals over convex domains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1161-1174(2011).

    [26] Al-Temeemy A A, Al-Saqal S A. Laser-based structured light technique for 3D reconstruction using extreme laser stripes extraction method with global information extraction[J]. Optics & Laser Technology, 138, 106897(2021).

    [27] Goesele M, Snavely N, Curless B et al. Multi-view stereo for community photo collections[C](2007).

    [28] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1362-1376(2010).

    [29] Campbell N D F, Vogiatzis G, Hernández C, Forsyth D, Torr P, Zisserman Z et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[M]. Computer vision-ECCV 2008. Lecture notes in computer science, 5302, 766-779(2008).

    [30] Sinha S N, Mordohai P, Pollefeys M. Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh[C](2007).

    [31] Vogiatzis G, Hernandez Esteban C, Torr P H S et al. Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 2241-2246(2007).

    [32] Schönberger J L, Zheng E L, Frahm J M, Leibe B, Matas J, Sebe N et al. Pixelwise view selection for unstructured multi-view stereo[M]. Computer vision-ECCV 2016. Lecture notes in computer science, 9907, 501-518(2016).

    [33] Galliani S, Lasinger K, Schindler K. Massively parallel multiview stereopsis by surface normal diffusion[C], 873-881(2016).

    [34] Tola E, Strecha C, Fua P. Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications, 23, 903-920(2012).

    [35] Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193-203(1998).

    [36] Göbel W, Kampa B M, Helmchen F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning[J]. Nature Methods, 4, 73-79(2007).

    [37] Park J, Kim H, Tai Y W et al. High quality depth map upsampling for 3D-TOF cameras[C], 1623-1630(2012).

    [38] Rocchini C, Cignoni P, Montani C et al. A low cost 3D scanner based on structured light[J]. Computer Graphics Forum, 20, 299-308(2001).

    [39] Khoshelham K, Elberink S O. Accuracy and resolution of Kinect depth data for indoor mapping applications[J]. Sensors, 12, 1437-1454(2012).

    [40] Hoegg T, Lefloch D, Kolb A. Time-of-Flight camera based 3D point cloud reconstruction of a car[J]. Computers in Industry, 64, 1099-1114(2013).

    [41] Li S R, Li Q, Li H Y et al. Real-time accurate 3D reconstruction based on Kinect v2[J]. Journal of Software, 27, 2519-2529(2016).

    [42] Luo X B, Zhong Y X, Li R J. Data registration in 3-D scanning systems[J]. Journal of Tsinghua University (Science and Technology), 44, 1104-1106(2004).

    [43] Montusiewicz J, Miłosz M, Kęsik J et al. Structured-light 3D scanning of exhibited historical clothing: a first-ever methodical trial and its results[J]. Heritage Science, 9, 74(2021).

    [44] Pan Q F, Ren Y P. Research on 3D measurement technology based on multi-view geometry[J]. Construction Materials & Decoration, 192-193(2015).

    [45] Wang B Q. Research on 3D point cloud reconstruction algorithm based on monocular vision and multi-view geometry[D](2019).

    [46] Li Z L. Research on 3D reconstruction technology based on multi-view geometry[D](2020).

    [47] Morse B, Howard J, Cohen S et al. PatchMatch-based content completion of stereo image pairs[C], 555-562(2012).

    [48] Barnes C, Shechtman E, Finkelstein A et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 28, 24(2009).

    [49] Bleyer M, Rhemann C, Rother C. PatchMatch stereo-stereo matching with slanted support windows[C](2011).

    [50] Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information[C], 807-814(2005).

    [51] Gao L. Research on improved Delaunay triangulation algorithm[D](2015).

    [52] Green P J, Sibson R. Computing dirichlet tessellations in the plane[J]. The Computer Journal, 21, 168-173(1978).

    [53] Bowyer A. Computing dirichlet tessellations[J]. The Computer Journal, 24, 162-166(1981).

    [54] Watson D F. Computing the n-dimensional delaunay tessellation with application to voronoi polytopes[J]. The Computer Journal, 24, 167-172(1981).

    [55] Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction[C](2016).

    [56] Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 36, 193-202(1980).

    [57] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [58] LeCun Y, Boser B, Denker J S et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1, 541-551(1989).

    [59] Huang G B, Lee H, Learned-Miller E. Learning hierarchical representations for face verification with convolutional deep belief networks[C], 2518-2525(2012).

    [60] Ranzato M, Hinton G E. Modeling pixel means and covariances using factorized third-order boltzmann machines[C], 2551-2558(2010).

    [61] Ranzato M, Mnih V, Susskind J M et al. Modeling natural images using gated MRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 2206-2222(2013).

    [62] Courville A, Bergstra J, Bengio Y. Unsupervised models of images by spike-and-slab RBMs[C](2011).

    [63] Yao Y, Luo Z X, Li S W, Ferrari V, Hebert M, Sminchisescu C et al. MVSNet: depth inference for unstructured multi-view stereo[M]. Computer Vision-ECCV 2018. Lecture notes in computer science, 11212, 785-801(2018).

    [64] Yao Y, Luo Z X, Li S W et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C], 5520-5529(2020).

    [65] Yang J Y, Mao W, Alvarez J M et al. Cost volume pyramid based depth inference for multi-view stereo[C], 4876-4885(2020).

    [66] Chen R, Han S F, Xu J et al. Point-based multi-view stereo network[C], 1538-1547(2020).

    [67] Gu X D, Fan Z W, Zhu S Y et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C], 2492-2501(2020).

    [68] Cheng S, Xu Z X, Zhu S L et al. Deep stereo using adaptive thin volume representation with uncertainty awareness[C], 2521-2531(2020).

    [69] Sormann C, Knöbelreiter P, Kuhn A et al. BP-MVSNet: belief-propagation-layers for multi-view-stereo[C], 394-403(2021).

    [70] Yu Z H, Gao S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C], 1946-1955(2020).

    [72] Ma Z Y, Teed Z, Deng J, Avidan S, Brostow G, Cissé M et al. Multiview stereo with cascaded epipolar RAFT[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13691, 734-750(2022).

    [73] Weilharter R, Fraundorfer F. HighRes-MVSNet: a fast multi-view stereo network for dense 3D reconstruction from high-resolution images[J]. IEEE Access, 9, 11306-11315(2021).

    [74] Ma X J, Gong Y, Wang Q R et al. EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo[C], 5712-5720(2022).

    [75] Yu A Z, Guo W Y, Liu B et al. Attention aware cost volume pyramid based multi-view stereo network for 3D reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 448-460(2021).

    [76] Wang F, Galliani S, Vogel C et al. PatchmatchNet: learned multi-view patchmatch stereo[C], 14189-14198(2021).

    [77] Li Y, Li W Y, Zhao Z J et al. DRI-MVSNet: a depth residual inference network for multi-view stereo images[J]. PLoS One, 17, e0264721(2022).

    [78] Wang F, Galliani S, Vogel C et al. IterMVS: iterative probability estimation for efficient multi-view stereo[C], 8596-8605(2022).

    [79] Saeed S, Lee S, Cho Y et al. ASPPMVSNet: a high-receptive-field multiview stereo network for dense three-dimensional reconstruction[J]. ETRI Journal, 44, 1034-1046(2022).

    [80] Peng R, Wang R J, Wang Z Y et al. Rethinking depth estimation for multi-view stereo: a unified representation[C], 8635-8644(2022).

    [81] Yang J Y, Alvarez J M, Liu M M. Non-parametric depth distribution modelling based depth inference for multi-view stereo[C], 8616-8624(2022).

    [82] Cheng W, Bai Z Y, Li J J et al. ADIM-MVSNet: adaptive depth interval multi-view stereo network for 3D reconstruction[C], 281-287(2022).

    [84] Xu H B, Zhou Z P, Qiao Y et al. Self-supervised multi-view stereo via effective co-segmentation and data-augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 3030-3038(2021).

    [85] Chang D, Božič A, Zhang T, Avidan S, Brostow G, Cissé M et al. RC-MVSNet: unsupervised multi-view stereo with neural rendering[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13691, 665-680(2022).

    [86] Ding Y K, Zhu Q T, Liu X Y, Avidan S, Brostow G, Cissé M et al. KD-MVS: knowledge distillation based self-supervised learning for multi-view stereo[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13691, 630-646(2022).

    [87] Gao C, Liu J, Li X et al. Accurate compressed look up table method for CGH in 3D holographic display[J]. Optics Express, 23, 33194-33204(2015).

    [88] Pan Y J, Wang Y T, Liu J et al. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation[J]. Applied Optics, 53, 1354-1362(2014).

    [89] Wang F, Shimobaba T, Zhang Y P et al. Acceleration of polygon-based computer-generated holograms using look-up tables and reduction of the table size via principal component analysis[J]. Optics Express, 29, 35442-35455(2021).

    [90] Jia J, Si J, Chu D P. Fast two-step layer-based method for computer generated hologram using sub-sparse 2D fast Fourier transform[J]. Optics Express, 26, 17487-17497(2018).

    [91] Horisaki R, Takagi R, Tanida J. Deep-learning-generated holography[J]. Applied Optics, 57, 3859-3863(2018).

    [92] Lee J, Jeong J, Cho J et al. Deep neural network for multi-depth hologram generation and its training strategy[J]. Optics Express, 28, 27137-27154(2020).

    [93] Eybposh M H, Caira N W, Atisa M et al. DeepCGH: 3D computer-generated holography using deep learning[J]. Optics Express, 28, 26636-26650(2020).

    [94] Shi L, Li B C, Kim C et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 591, 234-239(2021).

    [95] Wu J C, Liu K X, Sui X M et al. High-speed computer-generated holography using an autoencoder-based deep neural network[J]. Optics Letters, 46, 2908-2911(2021).

    [96] Chang C L, Wang D, Zhu D C et al. Deep-learning-based computer-generated hologram from a stereo image pair[J]. Optics Letters, 47, 1482-1485(2022).

    [97] Chang C L, Zhu D C, Li J M et al. Three-dimensional computer holography enabled from a single 2D image[J]. Optics Letters, 47, 2202-2205(2022).

    [98] Shui X H, Zheng H D, Xia X X et al. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography[J]. Optics Express, 30, 44814-44826(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhuojian Tong, Jinbin Gui, Lei Hu, Xianfei Hu. Progress on Data Acquisition Methods for Holographic 3D Display[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 14, 2023

    Accepted: Oct. 30, 2023

    Published Online: May. 6, 2024

    The Author Email: Jinbin Gui (jinbingui@163.com)

    DOI:10.3788/LOP232113

    CSTR:32186.14.LOP232113

    Topics