Chinese Journal of Lasers, Volume. 51, Issue 21, 2107108(2024)

Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model

Xinjuan Liu, Xu Han, and Erxi Fang*
Author Affiliations
  • School of Electronic and Information, Soochow University, Suzhou 215006, Jiangsu , China
  • show less
    Figures & Tables(14)
    Overall network structure of MPU-Net
    Fundus vascular and microvascular labels. (a) Ground truth; (b) microvascular label
    Example of a morphological structure operator
    Schematic diagram of the multi-scale feature mixing and fusion module (MSF)
    Vascular segmentation dataset
    Heat map examples showing the probabilistic features output by the network before and after adding MSF
    Heat map examples showing the probability features output by the network before and after adding Mic-Net
    Vascular segmentation examples of ablation experiment on the DRIVE test set
    Vascular segmentation examples of ablation experiment on the CHASE_DB1 test set
    Vascular segmentation examples of ablation experiment on the STARE test set
    • Table 1. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the DRIVE test set

      View table

      Table 1. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the DRIVE test set

      MethodYearAccuracySensitivitySpecificityAUC
      U-Net620150.95310.75370.98200.9755
      Yan et al.2020190.95380.76310.98200.9750
      DG-Net1020200.96040.76140.98370.9846
      CS2-Net2120210.95530.81540.97570.9784
      ACCA-MLA-D-U-Net1220220.95810.80460.98500.9827
      Mao et al.1420230.81050.97850.9812
      TDCAU-Net1620240.95560.81870.97560.9795
      MPU-Net (ours)20240.97100.82430.98530.9889
    • Table 2. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the CHASE_DB1 test set

      View table

      Table 2. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the CHASE_DB1 test set

      MethodYearAccuracySensitivitySpecificityAUC
      U-Net620150.95780.82280.97010.9772
      Vessel-Net2220190.96610.81320.98140.9860
      CS2-Net2120210.96510.83290.97840.9851
      ACCA-MLA-D-U-Net1220220.96730.84020.98010.9874
      WA-Net2320220.96530.80420.98260.9841
      Mao et al.1420230.82410.98500.9893
      TDCAU-Net1620240.97380.82430.98360.9878
      MPU-Net (ours)20240.97640.85930.98440.9913
    • Table 3. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the STARE test set

      View table

      Table 3. Experimental results comparison of MPU-Net with existing state-of-the-art methods on the STARE test set

      MethodYearAccuracySensitivitySpecificityAUC
      Yan et al.2420180.96120.75810.98460.9801
      Yan et al.2020190.96380.77350.98570.9833
      CS2-Net2120210.96700.83960.98130.9875
      ACCA-MLA-D-U-Net1220220.96650.79140.98700.9864
      LUVS-Net2520230.97530.81330.98610.8187
      MPU-Net (ours)20240.97680.78440.99070.9905
    • Table 4. Comparison in ablation experimental results (mean ± std)

      View table

      Table 4. Comparison in ablation experimental results (mean ± std)

      DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
      DRIVE1××

      0.9672±

      0.0002

      0.7928±

      0.0073

      0.9842±

      0.0009

      0.8082±0.0008

      0.9816±

      0.0010

      0.6815±

      0.0127

      2×

      0.9708

      ±0.0001

      0.8234

      ±0.0052

      0.9851±

      0.0006

      0.8309±0.0002

      0.9887±

      0.0001

      0.7153±

      0.0066

      3

      0.9710±

      0.0001

      0.8243±

      0.0012

      0.9853±

      0.0002

      0.8314±0.0002

      0.9889±

      0.0001

      0.7199±

      0.0013

      DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
      CHASE_DB11××

      0.9757±

      0.0001

      0.8296±

      0.0037

      0.9855±

      0.0003

      0.8112±0.0006

      0.9878±

      0.0006

      0.7528±

      0.0050

      2×

      0.9762±

      0.0002

      0.8563±

      0.0045

      0.9843±

      0.0005

      0.8193±0.0042

      0.9912±

      0.0001

      0.7833±

      0.0064

      3

      0.9764±

      0.0002

      0.8593±

      0.0034

      0.9844±

      0.0005

      0.8212±0.0032

      0.9913±

      0.0001

      0.7874±

      0.0052

      DatasetMethodMSFMic-NetAccuracySensitivitySpecificityDice coefficientAUCSen_Mic
      STARE1××

      0.9766±

      0.0005

      0.7413±

      0.0100

      0.9931±

      0.0003

      0.7979±0.0056

      0.9831±

      0.0013

      0.6066±

      0.0184

      2×

      0.9764±

      0.0003

      0.7726±

      0.0081

      0.9911±

      0.0005

      0.8031±0.0030

      0.9829±

      0.0011

      0.6345±

      0.0090

      3

      0.9768±

      0.0002

      0.7844±

      0.0059

      0.9907±

      0.0005

      0.8089±0.0016

      0.9905±

      0.0005

      0.6388±

      0.0042

    Tools

    Get Citation

    Copy Citation Text

    Xinjuan Liu, Xu Han, Erxi Fang. Fundus Microvascular Image Segmentation Method Based on Parallel U‐Net Model[J]. Chinese Journal of Lasers, 2024, 51(21): 2107108

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Jul. 9, 2024

    Accepted: Aug. 26, 2024

    Published Online: Oct. 31, 2024

    The Author Email: Erxi Fang (fangerxi@suda.edu.cn)

    DOI:10.3788/CJL241041

    CSTR:32183.14.CJL241041

    Topics