Urban Mass Transit, Volume. 28, Issue 7, 124(2025)
Precise Rail Transit Sleeper Positioning Technology Based on Improved YOLOv8n Model
[8] [8] KUANG H L, CHAN L L H, YAN H. Multi-class fruit detection based on multiple color channels[C]∥2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). Guangzhou, China. New York: IEEE, 2015: 1.
[9] [9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-03-30]. https:∥arxiv.org/abs/1804.02767v1.
[10] [10] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. New York: IEEE, 2020: 10778.
[11] [11] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971.
[12] [12] XIA Y, XIE F, JIANG Z. Broken railway fastener detection based on AdaBoost algorithm[C]∥2010 International Conference on Optoelectronics and Image Processing. Haikou: IEEE, 2010: 313.
Get Citation
Copy Citation Text
YAN Xiaoxia, GUO Jianqin, ZHAI Huchao, LIU Yutao, LI Junxin, WANG Liangxian. Precise Rail Transit Sleeper Positioning Technology Based on Improved YOLOv8n Model[J]. Urban Mass Transit, 2025, 28(7): 124
Category:
Received: Jan. 11, 2025
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: GUO Jianqin (643781816@qq.com)