Chinese Journal of Lasers, Volume. 33, Issue 6, 756(2006)
Theoretical and Experimental Studies on Second-Order Soliton Compression Based on Dispersion Flattened Fiber
[1] [1] S. V. Chernikov, D. J. Richardson, E. M. Dianov et al.. Picosecond soliton pulse compressor based on dispersion decreasing fiber [J]. Electron. Lett., 1992, 28(19):1842~1844
[2] [2] A. Mostofi, H. H. Hanza, P. L. Chu. Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers [J]. IEEE J. Quantum Electron., 1997, 33(4):620~628
[5] [5] S. V. Chernikov, J. R. Taylor, R. Kashyap. Comblike dispersion profiled fiber for soliton pulse train generation [J]. Opt. Lett., 1994, 19(8):539~541
[7] [7] P. C. Reeves-Hall, J. R. Taylor. Wavelength and duration tunable sub-picosecond source using adiabatic Raman compression [J]. Electron. Lett., 2001, 37(7):417~418
[8] [8] T. E. Murphy. 10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium [J]. IEEE Photon. Technol. Lett., 2002, 14(10):1424~1426
[9] [9] K. Igarashi, H. Tobioka, S. Takasaka et al.. Duration-tunable 100-GHz sub-picosecond soliton train generation through adiabatic Raman amplification in conjunction with soliton reshaping [C]. OFC’2003, Atlanta, GA, USA, 2003. 1:155~156
[10] [10] T. Kogure, J. H. Lee, D. J. Richardson. Wavelength and duration-tunable 10-GHz 1.3-ps pulse source using dispersion decreasing fiber-based distributed Raman amplification [J]. IEEE Photon. Technol. Lett., 2004, 16(4):1167~1169
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Theoretical and Experimental Studies on Second-Order Soliton Compression Based on Dispersion Flattened Fiber[J]. Chinese Journal of Lasers, 2006, 33(6): 756