Acta Optica Sinica, Volume. 43, Issue 10, 1014003(2023)

Active Control Technology of Petawatt Laser Signal-to-Noise Ratio Based on Third-Order Dispersion

Ke Hou1,2, Xiaoping Ouyang1,3、*, Liangze Pan1,3, Fucai Ding1,2, Qi Xiao1,2, Xue Pan1,3, Xuejie Zhang1,3, Ping Zhu1,3, Xinglong Xie1,3, Baoqiang Zhu1,3, Jian Zhu4, and Jianqiang Zhu1,3
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4Shanghai Institute of Laser and Plasma, Chinese Academy of Engineering Physics, Shanghai 201800, China
  • show less
    References(28)

    [1] Zhao K, Zhang Q, Chini M et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 37, 3891-3893(2012).

    [2] He P, Liu Y Y, Zhao K et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 42, 474-477(2017).

    [3] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [4] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [5] Liu H Y, Kang N, Ji S Z et al. Characterization of suprathermal electrons produced by SRS and TPD[J]. Chinese Journal of Lasers, 48, 2308001(2021).

    [6] Luther-Davies B. Plasma density fluctuations and the physics of short-pulse laser-produced plasmas[J]. Journal of Modern Optics, 37, 1873-1885(1990).

    [7] Norreys P A, Zepf M, Moustaizis S et al. Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets[J]. Physical Review Letters, 76, 1832-1835(1996).

    [8] Rosen M D. The science applications of the high-energy density plasmas created on the Nova laser[J]. Physics of Plasmas, 3, 1803-1812(1996).

    [9] Zepf M, Tsakiris G D, Pretzler G et al. Role of the plasma scale length in the harmonic generation from solid targets[J]. Physical Review E, 58, R5253-R5256(1998).

    [10] Ziegler T, Albach D, Bernert C et al. Proton beam quality enhancement by spectral phase control of a PW-class laser system[J]. Scientific Reports, 11, 7338(2021).

    [11] Zhang J, Wang W M, Yang X H et al. Double-cone ignition scheme for inertial confinement fusion[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 378, 20200015(2020).

    [12] Hu Y T, Zhang H, Deng H X et al. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 48, 0401006(2021).

    [13] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [14] Deng G, Pan W, Zou X H. Optical pulse compression using the combination of phase modulation and high-order dispersion compensation[J]. Optical Review, 17, 454-458(2010).

    [15] Wu F X, Wang C, Hu J B et al. A novel design of double chirped pulse amplification laser systems for fourth-order dispersion control[J]. Optics Express, 28, 31743-31753(2020).

    [16] Stuart N, Robinson T, Hillier D et al. Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators[J]. Optics Letters, 41, 3221-3224(2016).

    [17] Osvay K, Csatári M, Gaál A et al. Temporal contrast of high intensity femtosecond UV pulses[J]. Journal of the Chinese Chemical Society, 47, 855-857(2000).

    [18] Fork R L, Martinez O E, Gordon J P. Negative dispersion using pairs of prisms[J]. Optics Letters, 9, 150-152(1984).

    [19] Treacy E. Optical pulse compression with diffraction gratings[J]. IEEE Journal of Quantum Electronics, 5, 454-458(1969).

    [20] Fork R L, Cruz C H, Becker P C et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 12, 483-485(1987).

    [21] Tournois P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Optics Communications, 140, 245-249(1997).

    [22] Zhang S J, Chen X Y, Liu K et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Research, 10, 1731-1743(2022).

    [23] Jia Y Q, Zhu X N. Study on dispersion characteristics of a tilted birefringent filter[J]. Acta Physica Sinica, 53, 3065-3070(2004).

    [24] Zhang T, Li D W, Wang T et al. Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal[J]. Acta Physica Sinica, 70, 084202(2021).

    [25] Zhu X N. Explicit Jones transformation matrix for a tilted birefringent plate with its optic axis parallel to the plate surface[J]. Applied Optics, 33, 3502-3506(1994).

    [26] White W E, Patterson F G, Combs R L et al. Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems[J]. Optics Letters, 18, 1343-1345(1993).

    [27] Weiner A M[M]. Ultrafast optics. Zheng Z, Zhao X, Liu J S, et al., Transl, 84-86(2015).

    [28] Yang Q W, Guo A L, Xie X L et al. Stretcher system in high-energy petawatt laser facility[J]. Laser & Optoelectronics Progress, 45, 66-71(2008).

    Tools

    Get Citation

    Copy Citation Text

    Ke Hou, Xiaoping Ouyang, Liangze Pan, Fucai Ding, Qi Xiao, Xue Pan, Xuejie Zhang, Ping Zhu, Xinglong Xie, Baoqiang Zhu, Jian Zhu, Jianqiang Zhu. Active Control Technology of Petawatt Laser Signal-to-Noise Ratio Based on Third-Order Dispersion[J]. Acta Optica Sinica, 2023, 43(10): 1014003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 16, 2022

    Accepted: Jan. 16, 2023

    Published Online: May. 9, 2023

    The Author Email: Ouyang Xiaoping (oyxp@siom.ac.cn)

    DOI:10.3788/AOS221996

    Topics