China Oncology, Volume. 35, Issue 7, 642(2025)

Advances and future perspectives of neoadjuvant immunotherapy in colorectal cancer

ZHANG Yuyang and LIU Qian*
Author Affiliations
  • Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • show less
    References(111)

    [1] [1] HODI F S, O'DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723.

    [2] [2] GANDHI L, RODRGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22): 2078-2092.

    [3] [3] ANTONIA S J, VILLEGAS A, DANIEL D, et al. Durvalumab after chemoradiotherapy in stage Ⅲ non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929.

    [4] [4] THIBODEAU S N, BREN G, SCHAID D. Microsatellite instability in cancer of the proximal colon[J]. Science, 1993, 260(5109): 816-819.

    [5] [5] RICHARD BOLAND C, GOEL A. Microsatellite instability in colorectal cancer[J]. Gastroenterology, 2010, 138(6): 2073-2087.e3.

    [6] [6] LE D T, URAM J N, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.

    [7] [7] ANDRE T, ELEZ E, VAN CUTSEM E, et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer[J]. N Engl J Med, 2024, 391(21): 2014-2026.

    [8] [8] ANDR T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.

    [9] [9] LIU J, BLAKE S J, YONG M C R, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease[J]. Cancer Discov, 2016, 6(12): 1382-1399.

    [10] [10] GRINSHTEIN N, BRIDLE B, WAN Y H, et al. Neoadjuvant vaccination provides superior protection against tumor relapse following surgery compared with adjuvant vaccination[J]. Cancer Res, 2009, 69(9): 3979-3985.

    [11] [11] PATEL S P, OTHUS M, CHEN Y B, et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma[J]. N Engl J Med, 2023, 388(9): 813-823.

    [12] [12] BLANK C U, LUCAS M W, SCOLYER R A, et al. Neoadjuvant nivolumab and ipilimumab in resectable stage Ⅲ melanoma[J]. N Engl J Med, 2024, 391(18): 1696-1708.

    [13] [13] CHALABI M, FANCHI L F, DIJKSTRA K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.

    [14] [14] CHALABI M, VERSCHOOR Y L, TAN P B, et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer[J]. N Engl J Med, 2024, 390(21): 1949-1958.

    [15] [15] DE GOOYER P G M, VERSCHOOR Y L, VAN DEN DUNGEN L D W, et al. Neoadjuvant nivolumab (nivo) plus relatlimab (rela) in MMR-deficient colon cancer: results of the NICHE-3 study[J]. Ann Oncol, 2024, 35: S428-S429.

    [16] [16] CERCEK A, LUMISH M, SINOPOLI J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25): 2363-2376.

    [17] [17] GEORGE T J, YOTHERS G, JACOBS S A, et al. Phase Ⅱ study of durvalumab following neoadjuvant chemoRT in operable rectal cancer: NSABP FR-2[J]. J Clin Oncol, 2022, 40(4_suppl): 99.

    [18] [18] WANG F, LAI C X, LV Y M, et al. Efficacy and safety of combining short-course neoadjuvant chemoradiotherapy with envafolimab in locally advanced rectal cancer patients with microsatellite stability: a phase Ⅱ PRECAM experimental study[J]. Int J Surg, 2025, 111(1): 334-345.

    [19] [19] LIN Z Y, ZHANG P, CHI P, et al. Neoadjuvant short-course radiotherapy followed by camrelizumab and chemotherapy in locally advanced rectal cancer (UNION): early outcomes of a multicenter randomized phase Ⅲ trial[J]. Ann Oncol, 2024, 35(10): 882-891.

    [20] [20] DOMINGO E, FREEMAN-MILLS L, RAYNER E, et al. SomaticPOLEproofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 207-216.

    [21] [21] MEHNERT J M, PANDA A, ZHONG H, et al. Immune activation and response to pembrolizumab inPOLE-mutant endometrial cancer[J]. J Clin Invest, 2016, 126(6): 2334-2340.

    [22] [22] BOURDAIS R, ROUSSEAU B, PUJALS A, et al. Polymerase proofreading domain mutations: new opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency[J]. Crit Rev Oncol Hematol, 2017, 113: 242-248.

    [23] [23] WANG F, ZHAO Q, WANG Y N, et al. Evaluation ofPOLEandPOLD1mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncol, 2019, 5(10): 1504-1506.

    [24] [24] HE J J, OUYANG W, ZHAO W G, et al. Distinctive genomic characteristics inPOLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor[J]. Ann Transl Med, 2021, 9(2): 129.

    [25] [25] GARMEZY B, GHEEYA J, LIN H Y, et al. Clinical and molecular characterization ofPOLEmutations as predictive biomarkers of response to immune checkpoint inhibitors in advanced cancers[J]. JCO Precis Oncol, 2022, 6: e2100267.

    [26] [26] SCHROCK A B, OUYANG C, SANDHU J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J]. Ann Oncol, 2019, 30(7): 1096-1103.

    [27] [27] FABRIZIO D A, GEORGE T J Jr, DUNNE R F, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018, 9(4): 610-617.

    [28] [28] CHEN E X, JONKER D J, LOREE J M, et al. Effect of combined immune checkpoint inhibitionvsbest supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 study[J]. JAMA Oncol, 2020, 6(6): 831-838.

    [29] [29] BANDO H, TSUKADA Y, INAMORI K, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer[J]. Clin Cancer Res, 2022, 28(6): 1136-1146.

    [30] [30] LIN Z Y, CAI M, ZHANG P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554.

    [31] [31] ANTONIOTTI C, ROSSINI D, PIETRANTONIO F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2022, 23(7): 876-887.

    [32] [32] LU Y T, YUAN X L, WANG M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies[J]. J Hematol Oncol, 2022, 15(1): 47.

    [33] [33] ZHAO W S, LEI J, KE S B, et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase Ⅱ trial (RENMIN-215)[J]. EClinicalMedicine, 2023, 66: 102315.

    [34] [34] HU H B, KANG L, ZHANG J W, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48.

    [35] [35] National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: colon cancer. Version 1. 2025[EB/OL]. [2025-07-07]. https://www.nccn.org/guidelines/guidelines-detail.

    [37] [37] VERSCHOOR Y L, VAN DEN BERG J, BEETS G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: final clinical analysis of the NICHE study[J]. J Clin Oncol, 2022, 40(16_suppl): 3511.

    [38] [38] XU R H, WANG F, CHEN G, et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ⅰb study[J]. J Clin Oncol, 2024, 42(16_suppl): 3505.

    [39] [39] STARLING N, NEUMANN K, COLWELL B, et al. AZUR-2, a phase Ⅲ, open-label, randomized study of perioperative dostarlimab monotherapyvsstandard of care in previously untreated patients with T4N0 or stage Ⅲ dMMR/MSI-H resectable colon cancer[J]. J Clin Oncol, 2024, 42(3_suppl): TPS240.

    [40] [40] CHEN G, JIN Y, GUAN W L, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431.

    [41] [41] CERCEK A, SINOPOLI J C, SHIA J R, et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer[J]. J Clin Oncol, 2024, 42(17_suppl): LBA3512.

    [42] [42] CERCEK A, BACHET J B, CAPDEVILA J, et al. A phase two, single-arm, open-label study with dostarlimab monotherapy in participants with untreated stage Ⅱ/Ⅲ dMMR/MSI-H locally advanced rectal cancer (AZUR-1)[J]. Clin Colorectal Cancer, 2025, 24(2): 325-330.

    [43] [43] National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: rectal cancer. Version 1. 2025[EB/OL]. [2025-07-07]. https://www.nccn.org/guidelines/guidelines-detail.

    [44] [44] MORTON D, SEYMOUR M, MAGILL L, et al. Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial[J]. J Clin Oncol, 2023, 41(8): 1541-1552.

    [45] [45] KASI P M, JAFARI M D, YEO H, et al. Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient and deficient colorectal cancer: NEST-1 clinical trial[J]. Ann Oncol, 2024, 35: S5-S6.

    [46] [46] HISSONG E, JAFARI M D, KHAN S, et al. Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient (pMMR) and deficient (dMMR) colorectal cancer (CRC): NEST clinical trial update[J]. J Clin Oncol, 2025, 43(4_suppl): 207.

    [47] [47] CRONER R S, MERKEL S, PAPADOPOULOS T, et al. Multivisceral resection for colon carcinoma[J]. Dis Colon Rectum, 2009, 52(8): 1381-1386.

    [48] [48] XIA F, WANG Y Q, WANG H, et al. Randomized phase Ⅱ trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH)[J]. J Clin Oncol, 2024, 42(28): 3308-3318.

    [49] [49] ZHANG H, LI Y Q, XIA F, et al. Study protocol of short-course radiotherapy combined with CAPOX and PD-1 inhibitor for locally advanced colon cancer: a randomised, prospective, multicentre, phase Ⅱ trial (TORCH-C)[J]. BMJ Open, 2024, 14(2): e079442.

    [50] [50] GEORGE T J, YOTHERS G, RAHMA O E, et al. Long-term results from NRG-GI002: a phase Ⅱ clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)[J]. J Clin Oncol, 2023, 41(4_suppl): 7.

    [51] [51] XIAO W W, CHEN G, GAO Y H, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J]. Cancer Cell, 2024, 42(9): 1570-1581.e4.

    [52] [52] PANG K, LIU X Z, YAO H W, et al. Impact of PD1 blockade added to neoadjuvant chemoradiotherapy on rectal cancer surgery: post-hoc analysis of the randomized POLARSTAR trial[J]. Br J Surg, 2025, 112(3): znaf057.

    [53] [53] DE LA FOUCHARDIERE C, ZAANAN A, COHEN R, et al. Immunotherapy for localized dMMR/MSI tumors: first interim analysis of the IMHOTEP trial[J]. J Clin Oncol, 2023, 41(16_suppl): 2591.

    [54] [54] SHIU K K, JIANG Y R, SAUNDERS M, et al. NEOPRISM-CRC: Neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer[J]. J Clin Oncol, 2024, 42(17_suppl): LBA3504.

    [55] [55] BUJKO K, NOWACKI M P, NASIEROWSKA-GUTTMEJER A, et al. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer[J]. Br J Surg, 2006, 93(10): 1215-1223.

    [56] [56] ERLANDSSON J, HOLM T, PETTERSSON D, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm Ⅲ): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial[J]. Lancet Oncol, 2017, 18(3): 336-346.

    [57] [57] JIN J, TANG Y, HU C, et al. Multicenter, randomized, phase Ⅲ trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR)[J]. J Clin Oncol, 2022, 40(15): 1681-1692.

    [58] [58] DIJKSTRA E A, NILSSON P J, HOSPERS G A P, et al. Locoregional failure during and after short-course radiotherapy followed by chemotherapy and surgery compared with long-course chemoradiotherapy and surgery: a 5-year follow-up of the RAPIDO trial[J]. Ann Surg, 2023, 278(4): e766-e772.

    [59] [59] PU W J, CHEN W Q, JING H M, et al. Total neoadjuvant therapy based on short-course radiotherapy versus standard long-course chemoradiotherapy for locally advanced rectal cancer: a systematic review and meta-analysis of randomized controlled trials[J]. Front Oncol, 2024, 14: 1515756.

    [60] [60] YANG L, CUI X J, WU F P, et al. The efficacy and safety of neoadjuvant chemoradiotherapy combined with immunotherapy for locally advanced rectal cancer patients: a systematic review[J]. Front Immunol, 2024, 15: 1392499.

    [61] [61] ZHANG H, HUANG J, XU H J, et al. Neoadjuvant immunotherapy for DNA mismatch repair proficient/microsatellite stable non-metastatic rectal cancer: a systematic review and meta-analysis[J]. Front Immunol, 2025, 16: 1523455.

    [62] [62] GRAPIN M, RICHARD C, LIMAGNE E, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination[J]. J Immunother Cancer, 2019, 7(1): 160.

    [63] [63] MORISADA M, CLAVIJO P E, MOORE E, et al. PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation[J]. Oncoimmunology, 2017, 7(3): e1395996.

    [64] [64] LAN J, LI R, YIN L M, et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 101(1): 74-87.

    [65] [65] CROCENZI T, COTTAM B, NEWELL P, et al. A hypofractionated radiation regimen avoids the lymphopenia associated with neoadjuvant chemoradiation therapy of borderline resectable and locally advanced pancreatic adenocarcinoma[J]. J Immunother Cancer, 2016, 4: 45.

    [66] [66] SHAMSEDDINE A, MACHMOUCHI A, NATOUT M, et al. Assessment of immunoscore and MRI tumor regression grade to predict complete pathologic response in patients with locally advanced rectal cancer: data from phase Ⅱ averectal study[J]. J Clin Oncol, 2023, 41(4_suppl): 212.

    [68] [68] TAMBERI S, GRASSI E, ZINGARETTI C, et al. A phase Ⅱ study of capecitabine plus concomitant radiation therapy followed by durvalumab (MEDI4736) as preoperative treatment in rectal cancer: PANDORA study final results[J]. J Clin Oncol, 2022, 40(17_suppl): LBA3513.

    [69] [69] SALVATORE L, BENSI M, CORALLO S, et al. Phase Ⅱ study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): the AVANA study[J]. J Clin Oncol, 2021, 39(15_suppl): 3511.

    [70] [70] YANG Z Y, GAO J L, ZHENG J Y, et al. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study[J]. Signal Transduct Target Ther, 2024, 9(1): 56.

    [71] [71] WU A W, LI Y J, JI D B, et al. PKUCH 04 trial: Total neoadjuvant chemoradiation combined with neoadjuvant PD-1 blockade for pMMR/MSS locally advanced middle to low rectal cancer[J]. J Clin Oncol, 2022, 40(16_suppl): 3609.

    [72] [72] ROXBURGH C S, HANNA C R, GRAHAM J, et al. Durvalumab (MEDI 4736) with extended neoadjuvant regimens in rectal cancer: a randomised phase Ⅱ trial (PRIME-RT)[J]. J Clin Oncol, 2023, 41(4_suppl): TPS282.

    [73] [73] FOKAS E, ALLGUER M, POLAT B, et al. Randomized phase Ⅱ trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12[J]. J Clin Oncol, 2019, 37(34): 3212-3222.

    [74] [74] TANG Y, MA H, ZHOU H, et al. Preliminary results of a prospective phase Ⅱ study of total neoadjuvant therapy for locally advanced rectal cancer[J]. Int J Radiat Oncol, 2022, 114(3): e611-e612.

    [75] [75] GARCIA-AGUILAR J, PATIL S, GOLLUB M J, et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy[J]. J Clin Oncol, 2022, 40(23): 2546-2556.

    [76] [76] RAMJIAWAN R R, GRIFFIOEN A W, DUDA D G. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy?[J]. Angiogenesis, 2017, 20(2): 185-204.

    [77] [77] FUKUOKA S, HARA H, TAKAHASHI N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061.

    [78] [78] SCLAFANI F, BREGNI G, ASSAF I, et al. LBA2 Interim efficacy analysis of REGINA, a phase Ⅱ trial of neoadjuvant regorafenib (Rego), nivolumab (Nivo), and short-course radiotherapy (SCRT) in stage Ⅱ-Ⅲ rectal cancer (RC)[J]. Ann Oncol, 2024, 35: S212-S213.

    [79] [79] YU J H, XIAO B Y, LI D D, et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study[J]. Lancet Oncol, 2024, 25(7): 843-852.

    [80] [80] VERSCHOOR Y L, LAMBREGTS D M J, VAN DEN BERG J, et al. Radiotherapy, atezolizumab, and bevacizumab in rectal cancers with the aim of organ preservation: the TARZAN study[J]. J Clin Oncol, 2023, 41(4_suppl): 158.

    [81] [81] H U A N G J, H E W, Z H A O Y, e t a l. mFOLFOX6+bevacizumab+PD-1 monoclonal antibody in locally advanced MSS CRC (BASKET Ⅱ): a prospective, single-arm, open-label, phase Ⅱ study[J]. Ann Oncol, 2024, 35: S1433.

    [82] [82] LIN Z Y, ZHANG P, ZHAO L, et al. Short-course radiotherapy (SCRT) followed by fruquintinib plus adebrelimab and CAPOX in the total neoadjuvant therapy of locally advanced rectal cancer (LARC): a multicenter, single-arm, open-label, phase Ⅱ study (UNION TNT)[J]. J Clin Oncol, 2025, 43(4_suppl): 192.

    [84] [84] FOX D A, BHAMIDIPATI D, KONISHI T, et al. Endoscopic and imaging outcomes of PD-1 therapy in localised dMMR colorectal cancer[J]. Eur J Cancer, 2023, 194: 113356.

    [85] [85] LIU S, ZHONG G X, ZHOU W X, et al. Can endorectal ultrasound, MRI, and mucosa integrity accurately predict the complete response for mid-low rectal cancer after preoperative chemoradiation? A prospective observational study from a single medical center[J]. Dis Colon Rectum, 2018, 61(8): 903-910.

    [86] [86] SMITH F M, WILAND H, MACE A, et al. Clinical criteria underestimate complete pathological response in rectal cancer treated with neoadjuvant chemoradiotherapy[J]. Dis Colon Rectum, 2014, 57(3): 311-315.

    [87] [87] DI GIACOMO A M, DANIELLI R, GUIDOBONI M, et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases[J]. Cancer Immunol Immunother, 2009, 58(8): 1297-1306.

    [88] [88] SEYMOUR L, BOGAERTS J, PERRONE A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics[J]. Lancet Oncol, 2017, 18(3): e143-e152.

    [89] [89] KIM S H, LEE J M, HONG S H, et al. Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy[J]. Radiology, 2009, 253(1): 116-125.

    [90] [90] YUVAL J B, PATIL S, GANGAI N, et al. MRI assessment of rectal cancer response to neoadjuvant therapy: a multireader study[J]. Eur Radiol, 2023, 33(8): 5761-5768.

    [91] [91] LAMBREGTS D M J, DELLI PIZZI A, LAHAYE M J, et al. A pattern-based approach combining tumor morphology on MRI with distinct signal patterns on diffusion-weighted imaging to assess response of rectal tumors after chemoradiotherapy[J]. Dis Colon Rectum, 2018, 61(3): 328-337.

    [92] [92] LAHAYE M J, BEETS G L, ENGELEN S M E, et al. Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part Ⅱ. What are the criteria to predict involved lymph nodes?[J]. Radiology, 2009, 252(1): 81-91.

    [93] [93] AVALLONE A, ALOJ L, CARAC C, et al. Early FDG PET response assessment of preoperative radiochemotherapy in locally advanced rectal cancer: correlation with long-term outcome[J]. Eur J Nucl Med Mol Imaging, 2012, 39(12): 1848-1857.

    [94] [94] CAPIRCI C, RUBELLO D, PASINI F, et al. The role of dualtime combined 18-fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery[J]. Int J Radiat Oncol Biol Phys, 2009, 74(5): 1461-1469.

    [95] [95] LOPCI E, HICKS R J, DIMITRAKOPOULOU-STRAUSS A, et al. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F] FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2323-2341.

    [96] [96] LOPCI E, AIDE N, DIMITRAKOPOULOU-STRAUSS A, et al. Perspectives on joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards for [18F] FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors[J]. Cancer Imaging, 2022, 22(1): 73.

    [97] [97] CRIM F, VALEGGIA S, BAFFONI L, et al. [18F] FDG PET/MRI in rectal cancer[J]. Ann Nucl Med, 2021, 35(3): 281-290.

    [98] [98] ZHANG X, LIN Z Y, FENG Y, et al. Predicting pathologic complete response in locally advanced rectal cancer with [68Ga] Ga-FAPI-04 PET, [18F] FDG PET, and contrast-enhanced MRI: lesion-to-lesion comparison with pathology[J]. J Nucl Med, 2024, 65(10): 1548-1556.

    [99] [99] AVCI G G, ARAL I P. The role of MRI and 18F-FDG PET/CT with respect to evaluation of pathological response in the rectal cancer patients after neoadjuvant chemoradiotherapy[J]. Indian J Cancer, 2021.

    [100] [100] PLODECK V, RAHBARI N N, WEITZ J, et al. FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences[J]. Eur Radiol, 2019, 29(1): 422-428.

    [101] [101] HU T D, GONG J, SUN Y Q, et al. Magnetic resonance imaging-based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: a large multicentric and validated study[J]. MedComm (2020), 2024, 5(7): e609.

    [102] [102] MIRANDA J, TAN G X V, FERNANDES M C, et al. Rectal MRI radiomics for predicting pathological complete response: where we are[J]. Clin Imaging, 2022, 82: 141-149.

    [103] [103] LUDFORD K, HO W J, THOMAS J V, et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors[J]. J Clin Oncol, 2023, 41(12): 2181-2190.

    [104] [104] LIN Z Y, ZHAI M L, WANG H H, et al. Longitudinal circulating tumor DNA monitoring in predicting response to short-course radiotherapy followed by neoadjuvant chemotherapy and camrelizumab in locally advanced rectal cancer: data from a phase Ⅲ clinical trial (UNION)[J]. Cancer Lett, 2025, 611: 217442.

    [105] [105] GEMCAD-REVEAL STUDY- circulating tumor DNA as a predictor of relapse in patients with locally advanced rectal cancer (REVEAL)[J]. Published online June 15, 2023.

    [106] [106] SMITH J J, DASARI A, SHI Q, et al. Alliance A022104/NRG-GI010: a randomized phase Ⅱ trial testing the efficacy of triplet versus doublet chemotherapy to achieve clinical complete response in patients with locally advanced rectal cancer: the Janus rectal cancer trial[J]. J Clin Oncol, 2023, 41(16_suppl): TPS3640.

    [107] [107] CAMPBELL B B, LIGHT N, FABRIZIO D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5): 1042-1056.e10.

    [108] [108] ESTEBAN-JURADO C, GIMNEZ-ZARAGOZA D, MUOZ J, et al.POLEandPOLD1screening in 155 patients with multiple polyps and early-onset colorectal cancer[J]. Oncotarget, 2017, 8(16): 26732-26743.

    [109] [109] KELLY R J, BEVER K, CHAO J, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer[J]. J Immunother Cancer, 2023, 11(6): e006658.

    [110] [110] MOSALEM O, COSTON T W, IMPERIAL R, et al. A comprehensive analysis ofPOLE/POLD1genomic alterations in colorectal cancer[J]. Oncologist, 2024, 29(9): e1224-e1227.

    [111] [111] MA X X, RIAZ N, SAMSTEIN R M, et al. Functional landscapes ofPOLEandPOLD1mutations in checkpoint blockade-dependent antitumor immunity[J]. Nat Genet, 2022, 54(7): 996-1012.

    [112] [112] BUDCZIES J, SEIDEL A, CHRISTOPOULOS P, et al. Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden[J]. Oncoimmunology, 2018, 7(12): e1526613.

    [113] [113] SHA D, JIN Z H, BUDCZIES J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12): 1808-1825.

    [114] [114] CHAU I, DOKI Y, AJANI J A, et al. Nivolumab (NIVO) plus ipilimumab (IPI) or NIVO plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced esophageal squamous cell carcinoma (ESCC): first results of the CheckMate 648 study[J]. J Clin Oncol, 2021, 39(18_suppl): LBA4001.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yuyang, LIU Qian. Advances and future perspectives of neoadjuvant immunotherapy in colorectal cancer[J]. China Oncology, 2025, 35(7): 642

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: LIU Qian (fcwpumch@163.com)

    DOI:10.19401/j.cnki.1007-3639.2025.07.003

    Topics