Laser & Optoelectronics Progress, Volume. 54, Issue 12, 122803(2017)

Hyperspectral Image Classification Algorithm Based on Joint Sparse Representation of Neighborhood Similarity

Li Jiaxun*, Dong Anguo, Shen Yadong, and Zhang Bei
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification[J]. IEEE Signal Processing Magazine, 2014, 31(1): 45-54.

    [2] [2] Li Tie, Sun Jinguang, Zhang Xinjun, et al. Research of hyperspectral image classification based on hierarchical sparse representation feature learning[J]. Laser & Optoelectronics Progress, 2016, 53(9): 091001.

    [3] [3] Tong Q, Xue Y, Zhang L. Progress in hyperspectral remote sensing science and technology in China over the past three decades[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 70-91.

    [4] [4] Li Y, Xie W, Li H. Hyperspectral image reconstruction by deep convolutional neural network for classification[J]. Pattern Recognition, 2017, 63: 371-383.

    [5] [5] Deng S, Xu Y, He Y, et al. A hyperspectral image classification framework and its application[J]. Information Sciences, 2015, 299: 379-393.

    [6] [6] Braun A C, Weidner U, Hinz S. Support vector machines, import vector machines and relevance vector machines for hyperspectral classification-A comparison[C]. 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2011: 12386162.

    [8] [8] Haq Q S U, Shi L, Tao L, et al. A I-1-minimization based approach for hyperspectral data classification[C]. International Conference on Advanced Materials in Microwaves and Optics, 2012, 500: 675-681.

    [9] [9] Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.

    [10] [10] Wang Jianing. Hyperspectral image classification based on joint sparse representation and morphological feature extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 082801.

    [11] [11] Chen Shanxue, Gui Chengming, Wang Yining. Close coupled set of pixels-based adaptive boosting class-wise sparse representation classifier for robust hyperspectral image classification[J]. Systems Engineering and Electronics, 2017, 39(3): 655-661.

    [12] [12] Fang L, Li S, Kang X, et al. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7738-7749.

    [13] [13] Fang L, Li S, Kang X, et al. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4186-4201.

    [14] [14] Zhang H, Li J, Huang Y, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2056-2065.

    [15] [15] Song Lin, Chen Yongmei, Zhao Yongqiang. Hyper-spectrum classification based on sparse representation model and auto-regressive model[J]. Acta Optica Sinica, 2012, 32(3): 0330003.

    [16] [16] Du P, Xue Z, Li J, et al. Learning discriminative sparse representations for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(6): 1089-1104.

    Tools

    Get Citation

    Copy Citation Text

    Li Jiaxun, Dong Anguo, Shen Yadong, Zhang Bei. Hyperspectral Image Classification Algorithm Based on Joint Sparse Representation of Neighborhood Similarity[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122803

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 16, 2017

    Accepted: --

    Published Online: Dec. 11, 2017

    The Author Email: Li Jiaxun (15637793688@163.com)

    DOI:10.3788/lop54.122803

    Topics