Journal of Optoelectronics · Laser, Volume. 33, Issue 7, 715(2022)
Image enhancement algorithm based on wavelet transform fusion with deep residue
[3] [3] NASRI M,POUR H N.Image denoising in the wavelet domain using a new adaptive thresholding function[J].Neurocomputing,2009,72(3):1012-1025.
[4] [4] CHANG S,YU B,VETTERLI M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(4):1532-1546.
[8] [8] DEMIREL H,ANBARJAFARI G.Discrete wavelet transform based satellite image resolution enhancement[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):1997-2004.
[9] [9] DEMIREL H,ANBARJAFARI G.Image resolution enhancement by using discrete and stationary wavelet decomposition[J].IEEE Transactions on Image Processing,2011,20(5):1458-1460.
[10] [10] LOZA A,BULL D R.HLL P R,et al.Atomatic contrast enhancement of low-light images based on local satistics of wevelet coefficients[J].Digital Signal Processing,2013,23(6):1856-1866.
[11] [11] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 27-30,2016,NV,USA.New York:IEEE,2016:770-778.
[12] [12] CHO D,BUI T D.Fast image enhancement in compressed wavelet domain[J].Signal Processing,2014,98:295-307.
Get Citation
Copy Citation Text
FAN Wending, LI Binhua, LI Junwu. Image enhancement algorithm based on wavelet transform fusion with deep residue[J]. Journal of Optoelectronics · Laser, 2022, 33(7): 715
Received: Sep. 17, 2021
Accepted: --
Published Online: Oct. 9, 2024
The Author Email: LI Binhua (lbh@bao.ac.cn)