Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0237001(2025)
Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint
Fig. 2. Component results of LatLRSD. (a)‒(d) Original turbulence blur image
Fig. 3. Iterative results of eigenvalues for LatLRSD. (a)‒(c) Singular value results corresponding to the noise component, low rank component, and hidden component in the low rank space decomposition at iteration numbers of #5, #25, #50, and #100
Fig. 4. Schematic diagrams of regularization constraint conditions. (a) MC constraint; (b) scaled GMC constraint
Fig. 5. The turbulence-degraded targets restoration results of non-convex regularization. (a)‒(b) Restoration results for non-convex objective functions in two different scenarios at iteration numbers of #5, #25, #50, and #100
Fig. 6. Original images. (a)‒(d) Flow field image, infrared turbulence image, long-range turbulence distortion image, and synthesized turbulence blur image
|
|
|
|
Get Citation
Copy Citation Text
Xinggui Xu, Hong Li, Bing Ran, Weihe Ren, Junrong Song. Turbulence-Blurred Target Restoration Algorithm with a Nonconvex Regularization Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237001
Category: Digital Image Processing
Received: Feb. 20, 2024
Accepted: Apr. 28, 2024
Published Online: Jan. 3, 2025
The Author Email:
CSTR:32186.14.LOP240707