Journal of Optoelectronics · Laser, Volume. 33, Issue 2, 171(2022)

Low-dose CT denoising algorithm based on improved generative adversarial network

OUYANG Wanqing, ZHANG Jian*, PENG Hui, LUO Yujie, HUANG Daiqin, and YANG Yuyi
Author Affiliations
  • [in Chinese]
  • show less
    References(13)

    [1] [1] NAIDICH D P,MARSHALL C H,GRIBBIN C,et al.Low-dose CT of the lungs:preliminar y observations[J].Radiology,1990,175(3):729-731.

    [4] [4] BIAN Z,MA J,HUANG J,et al.SR-NLM:a sinogram restoration induced non-local m eans image filtering for low-dose computed tomography[J].Computerized Medical Imaging and Graphics,2013,37(4):293-303.

    [5] [5] ZAMYATIN A,KATSEVICH G,KRYLOV R,et al.Adaptive multi-scale total variation mini mization filter for low dose CT imaging[C]//MedicalImaging 2014:Image Processing,March 21,2014,San Diego,California,United States.Washington:SPIE,2014:903426.

    [6] [6] CHEN Y,SHI L,FENG Q,et al.Artifact suppressed dictionary learning for low-dose CT image processing[J].IEEE Transactions on Medical Imaging,2014,33(12):2271-2292.

    [8] [8] CHEN H,ZHANG Y,ZHANG W,et al.Low-dose CT via convolutional neural network[J].Biomedical Optics Express,2017,8(2):679-694.

    [9] [9] CHEN H,ZHANG Y,KALRA M K,et al.Low-dose CT with a residual encoder-decoder convolutional neural network[J].IEEE Transactions on Medical Imaging,2017,36(12):2524-2535.

    [10] [10] YANG Q,YAN P,ZHANG Y,et al.Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J].IEEE Transactions on Medical Imaging,2018,37(6):1348-1357.

    [11] [11] WANG T,LEI Y,TIAN Z,et al.Deep learning-based image quality improvement for l ow-dose computed tomography simulation in radiation therapy[J].Journal of Medical Imaging, 2019,6(4):043504.

    [12] [12] HUANG Z,CHEN Z,ZHANG Q,et al.CaGAN:a cycle-consistent generative adversar ial network with attention for low-dose CT imaging[J].IEEE Transactions on Comp Utational Imaging, 2020,(99):1-1.

    [13] [13] CAI J,MENG Z,HO C M.Residual channel attention generative adversarial network for image super-resolution and noise reduction[EB/OL].(2020-04-28) [2021-05-25].https://arxiv.org/abs/2004.13674v1.

    [14] [14] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision(ECCV),September 8-14,2018,Munich,Germany.Switzerland:Springer,2018:3-19.

    [15] [15] JOHNSON J,ALAHI A,FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision (ECCV),October 8-16,2016,Amsterdam,Netherlands.Switzerland:Springer,2016:694-711.

    [16] [16] ATAEI S,ALIREZAIE J,BABYN P.Cascaded convolutional neural networks with perceptual loss for low dose CT denoising[EB/OL].(2020-07-26) [2021-05-25].https://arxiv.org/abs/2006.14738v1.

    Tools

    Get Citation

    Copy Citation Text

    OUYANG Wanqing, ZHANG Jian, PENG Hui, LUO Yujie, HUANG Daiqin, YANG Yuyi. Low-dose CT denoising algorithm based on improved generative adversarial network[J]. Journal of Optoelectronics · Laser, 2022, 33(2): 171

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 25, 2021

    Accepted: --

    Published Online: Oct. 9, 2024

    The Author Email: ZHANG Jian (jzhang@hnust.edu.cn)

    DOI:10.16136/j.joel.2022.02.0351

    Topics